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PREFACE.

IN laying this work before the public, I

think it right to state the object for which

it was originally composed, and the circum-

stances which have in some degree changed
its destination.

The treatise was originally designed for

a class of readers who might be supposed
to possess a moderate acquaintance with

the phaenornena and the terms of astro-

nomy ; geometrical notions sufficient to en-

able them to understand simple inferences

from diagrams ;
two or three terms of algebra

as applied to numbers ; but none of that ele-

vated science which has always been used

in the investigation of these subjects, and

without which scarcely an attempt has been

made to explain them. I proposed to my-
self, therefore, this general design : to ex-

plain the perturbations of the solar system,
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as far as I was able, without introducing- an

algebraic symbol.
It will readily be believed that, after thus

denying myself the use of the most powerful

engine of mathematics, I did not expect

to proceed very far. In my progress, how-

ever, I was surprised to find that a general

explanation, perfectly satisfactory, might be

offered for almost every inequality recog-

nised as sensible in works on Physical Astro-

nomy. I now began to conceive it possible

that the work, without in the smallest degree' O

departing from the original plan, or giving

up the original object, might also be found

useful to a body of students, furnished with

considerable mathematical powers, and in

the habit of applying them to the explana-

tion of difficult physical problems. With

this idea, the treatise is now printed in a

separate form.

The utility of a popular explanation of

profound physical investigations is not, in

my opinion, to be restricted to the instruc-

tion of readers who are unable to pursue
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them with the powers of modern analysis.

Much is done when the interest of a good

mathematician is excited by seeing, in a

form that can be easily understood, results

which are important for the comprehension

of the system of the universe, and which

can be made complete only by the applica-

tion of a higher calculus. That such an

interest has operated powerfully in our Uni-

versities, I have no doubt. How many of

our students would have known any thing

of the Lunar Theory., if they had not been

enjoined to read Newton's eleventh section ?

And how many at this time possess the least

acquaintance with the curious and compli-

cated, but beautiful, theory of Jupiter's

satellites, of which no elementary explana-

tion is laid before them? But this is not all.

The exercise of the mind in understanding

a series of propositions, where the last con-

clusion is geometrically in close connexion

with the first cause, is very different from

that which it receives from putting in play

the long train of machinery in a profound
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analytical process. The degrees of con-

viction in the two cases are very different.

It is known to every one who has been

engaged in the instruction of students at

our Universities, that the results of the

differential calculus are received by many,
rather with the doubts of imperfect faith

than with the confidence of rational con-

viction. Nor is this to be wondered at
;

a

clear understanding of many difficult steps,

a distinct perception that every connexion

of these steps is correct, and a general com-

prehension of the relations of the whole

series of steps, are necessary for complete

confidence. An unusual combination of ta-

lents, attainments, and labour, must be re-

quired, to appreciate clearly the evidence

for a result of deep analysis. I am not un-

willing to avow that the simple considera-

tions which have been forced upon me in

the composition of this treatise, have, in

several instances, contributed much to clear

up my view of points, which before were

obscure, and almost doubtful. To the greater
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number of students, therefore, I conceive a

popular geometrical explanation is more

useful than an algebraic investigation.

But even to those who are able to pursue
the investigations with a skilful use of the

most powerful methods, I imagine that a

popular explanation is not unserviceable.

The insight which it gives into the relation

of some mechanical causes and geometrical

effects, may powerfully, yet imperceptibly,

influence their understanding of many others

which occur in the prosecution of an alge-

braical process. The advanced student who
exalts in the progress which the modern

calculus enables him to make in the Lunar

or Planetary Theories, perhaps, hardly re-

flects how much of the power of understand-

ing his conclusions has been derived from

Newton's general explanations.

The utility of such a work being allowed,

it cannot, I think, be disputed that there

exists a necessity for a new one. The only

attempts at popular explanation in general

use with which I am acquainted, are New-
d 5
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ton's eleventh section, and a small part of

Sir John Herschel's admirable treatise on

Astronomy. The former of these (the most

valuable chapter that has ever been written

on physical science,) is in some parts very

defective. Thus, the explanation of the mo-

tion of the line of apses is too general, and

enters into particular cases too little, to

allow of a numerical calculation being-

founded on it. The explanation of evection

is extremely defective. The explanation of

variation, however, and of alteration of the

node and inclination, are probably as com-

plete as can be given. The latter treatise,

besides expanding some of Newton's reason-

ing, alludes to the long inequalities and se-

cular disturbances of the planets, but not

perhaps with sufficient accuracy of detail to

supersede the necessity of further explana-

tion. No popular work with which I am

acquainted, alludes at all to the peculiarities

of the theory of Jupiter's satellites.

I have attempted in some degree to sup-

ply these defects ;
with what success the
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reader must judge. As it was my object to

avoid repetition of theorems, which are to

be found in treatises on Mechanics and ele-

mentary works on Physical Astronomy, and

which are fully read and mastered by those

who take much interest in these subjects,

and which, moreover, do not admit of popu-
lar explanation so easily as many of the more

advanced propositions, I have omitted no-

ticing them any further than the consistency

of system seemed to require. Thus, with

regard to elliptic motion, Kepler's laws, &c.,

I have merely stated results
; because the

investigations of these are familiar to the

higher students, to whom I hope the other

explanations may be useful
;
and because

without great trouble it did not appear pos-

sible to put the reasons for these results in the

same form as those for other effects of force.

I have, however, alluded to some of the dif-

ficulties which are apt to embarrass readers

in the first instance, as much for the sake of

the reasoning contained in the explanation as

for the value of the results. The only addi-
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tions which I have thought it desirable to

make for the benefit of readers of Newton,

are contained in a few notes referring to

one of Newton's constructions.

To the reader who may detect faults

in the composition of the work, I can

merely state in apology, that it has been

written in a hurried manner, in the intervals

of very pressing employments. I have only

to add, that, holding a responsible situation

in my University, I have always thought it

my duty to promote, as far as I am able,

the study of Physical Astronomy ;
and that

if this treatise shall contribute to extend the

knowledge of its phenomena and their rela-

tion to their causes, either among the stu-

dents of the University, or in that more

numerous body for whom it was originally

written, I shall hold myself well repaid for

the trouble which it has cost me.

G. B. AIRY.

OBSERVATORY, CAMBRIDGE,

March 9, 1834.
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ON GRAVITATION,

SECTION I. On the Rules for calculating Attrac-

tion, or, the Law of Gravitation.

(1.) THE principle upon which the motions of the

earth, moon, and planets are calculated is this :

Every particle of matter attracts every other par-

ticle. That is, if there were a single body alone,

and at rest, then, if a second body were brought

near it, the first body would immediately begin to

move toward the second body. Just in the same

manner, if a needle is at rest on a table, and if a

magnet is brought near it, the needle immediately

begins to move towards the magnet, and we say

that the magnet attracts the needle. But mag-
netic attraction belongs only to certain bodies :

whereas the attraction of which we speak here be-

longs to all bodies of every kind : metals, earths,

fluids, and even the air and gases are equally sub-

ject to its influence.

B
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(2.) The most remarkable experiments which

prove that bodies attract each other are a set of

experiments made at the end of the last century by
Mr. Cavendish. Small leaden balls were sup-

ported on the ends of a rod which was suspended

at the middle by a slender wire
;
and when large

leaden balls were brought near to them,, it was

found that the wire was immediately twisted by

the motion of the balls. But the results of this

experiment are striking, principally because they

are unusual ; the ordinary force of gravity serves

quite as well to prove the existence of some such

power. For when we consider that the earth is

round, and that, on all parts of it, bodies, as soon

as they are at liberty, fall in directions perpen-

dicular to its surface, (and therefore fall in oppo-

site directions at the places which are diametrically

opposite,) wre are compelled to allow that there is a

force such as we call attraction, either directed to

the centre of the earth, or produced by a great

number of small forces, directed to all the different

particles composing the earth. The peculiar value

of Cavendish's experiment consists in showing that

there is a small force directed to every different

particle of the earth.

(3.) But it is necessary to state distinctly the
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rules by which this attraction is regulated,, and by
which it may be calculated; or (as it is techni-

cally called) the law of gravitation. Before we-

can do this, we must determine which of the effects

of attraction we choose to take as its measure. For

there are two distinct effects : one is the pressure

which it produces upon any obstacle that keeps

the body at rest ;
the other is the space through

which it draws the body in a certain time, if the

obstacle is removed and the body set at liberty.

Thus,, to take the ordinary force of gravity as an

instance: we might measure it by the pressure

which is produced on the hand by a lump of lead

held in the hand; or we might measure it by
the number of inches through which the lump of

lead would fall in a second of time after the hand

is opened (as the pressure and the fall are both

occasioned by gravity). But there is this difference

between the two measures ;
if we adopted the first,

since a large lump of lead weighs more than a

small one,, we should find a different measure by
the use of every different piece of lead ; whereas, if

we adopt the second, since it is well established by
careful and accurate experiments that large and

small lumps of lead, stones, and even feathers, fall

through the same number of inches in a second of

B2
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time., (when the resistance of the air, &c., is re-

moved,) we shall get the same measure for gravity,

whatever body we suppose subject to its influence.

The consistence and simplicity of the measure thus

obtained incline us to adopt it in every other case;

and thus we shall say, Attraction is measured by

the space through which it draws a body in one

second of time after the body is set at liberty.

(4.) Whenever we speak, therefore, of calcu-

lating attraction, it must be understood to mean

calculating the number of inches, or feet, through

which the attraction draws a body in one second of

time.

(5.) Now the first rule is this : "The attraction

of one body upon another body does not depend

on the mass of the body which is attracted, but is

the same whatever be the mass of the body so

attracted, if the distances are the same."

(6.) Thus Jupiter attracts the sun, and Jupiter

attracts the earth also; but though the sun's mass

is three hundred thousand times as great as the

earth's, yet the attraction of Jupiter on the sun is

exactly equal to his attraction on the earth, when

the sun and the earth are equally distant from Ju-

piter. In other words, (the attraction being mea-

sured in conformity with the definition above,)
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when the sun and the earth are at equal distances

from ^Jupiter, the attraction of Jupiter draws the

sun through as many inches,, or parts of an inch,

in one second of time as it draws the earth in the

same time.

(7.) The second rule is this : "Attraction is pro-

portional to the mass of the body which attracts,

if the distances of different attracting bodies be the

same."

(8.) Thus, suppose that the sun and Jupiter

are at equal distances from Saturn ;
the sun is

about a thousand times as big as Jupiter; then

whatever be the number of inches through which

Jupiter draws Saturn in one second of time, the

sun draws Saturn in the same time through a thou-

sand times that number of inches.

(9.) The third rule is this :
" If the same

attracting body act upon several bodies at dif-

ferent distances, the attractions are inversely pro-

portional to the square of the distances from the

attracting body."

(10.) Thus the earth attracts the sun, and the

earth also attracts the moon ;
but the sun is four

hundred times as far off as the moon, and there-

fore, the earth's attraction on the sun is only

TT-oV-co-th part of its attraction on the moon
; or,
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as the earth's attraction draws the moon through

about Vth of an inch in one second of time, the

earth's attraction draws the sun through ^-g-^.^-.g-g.th

of an inch in one second of time. In like man-

ner, supposing Saturn ten times as far from the

-sun as the earth is, the sun's attraction upon

Saturn is only one hundredth part of his attraction

on the earth.

(11.) The same rule holds in comparing the

attractions which one body exerts upon another,

when, from moving in different paths, and with

different degrees of swiftness, their distance is

altered. Thus Mars, in the spring of 1833, was

twice as far from the earth as in the autumn of

1832; therefore, in the spring of 1833, the earth's

attraction on Mars was only one-fourth of its at-

traction on Mars in the autumn of 1832. Jupiter

is three times as near to Saturn, when they are on

the same side of the sun as when they are on

opposite sides; therefore, Jupiter's attraction on

Saturn, and Saturn's attraction on Jupiter, are

nine times greater when they are on the same side

of the sun than when they are on opposite sides.

(12.) The reader may ask, How is all this

known to be true ? The best answer is, perhaps,

the following : We find that the force which the
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earth exerts upon the moon bears the same pro-

portion to gravity on the earth's surface, which it

ought to bear in conformity with the rule just

given. For the motions of the planets, calculations

are made, which are founded upon these laws,

and which will enable us to predict their places

with considerable accuracy, if the laws are true,

but which would be much in error if the laws were

false. The accuracy of astronomical observations

is carried to a degree that can scarcely be ima-

gined ;
and by means of these we can every day

compare the observed place of a planet with the

place which was calculated beforehand, according

to the law of gravitation. It is found that they

agree so nearly, as to leave no doubt of the truth

of the law. The motion of Jupiter, for instance,

is so perfectly calculated, that astronomers have

computed ten years beforehand the time at which

it will pass the meridian of different places, and we

find the predicted time correct within half a second

of time.
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SECTION II. On the Effect of Attraction upon a

Body which is in motion, and on the Orbital

Revolutions of Planets and Satellites.

(13.) WE have spoken of the simplest effects of

attraction, namely, the production of pressure, if

the matter on which the attraction acts is sup-

ported, (as when a stone is held in the hand,) and

the production of motion if the matter is set at

liberty, (as when a stone is dropped from the

hand.) And it will easily be understood, that

when a body is projected, or thrown, in the same

direction in which the force draws it, (as when a

stone is thrown downwards,) it will move with a

greater velocity than either of these causes sepa-

rately would have given it
;
and if thrown in the

direction opposite to that in which the force draws

it, (as when a stone is thrown upw
r

ards,) its motion

will become slower and slower, and will, at last,

be turned into a motion in the opposite direction.

We have yet to consider a case much more im-

portant for astronomy than either of these: Sup-

pose that a body is projected in a direction trans-

verse to, or crossing, the direction in which the

for ce draws it, how will it move ?
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(J4.) The simplest instance of this motion that

we can imagine is the motion of a stone when it

is thrown from the hand in a horizontal direction,

or in a direction nearly horizontal. We all know

that the stone soon falls to the ground ;
and if we

observe its motion with the least attention, we see

that it does not move in a straight line
;

it begins to

move in the direction in which it is thrown ; but

this direction is speedily changed ;
it continues to

change gradually and constantly, and the stone

strikes the ground, moving at that time in a direc-

tion much inclined to the original direction. The

most powerful effort that we can make, even when

we use artificial means, (as in producing the mo-

tion of a bomb or a cannon-ball,) is not sufficient

to prevent the body from falling at last. This

experiment, therefore, will not enable us imme-

diately to judge what will become of a body (as a

planet) which is put in motion at a great distance

from another body, which attracts it, (as the sun;)

but it will assist us much in judging generally

what is the nature of motion when a body is pro-

jected in a direction transverse to the direction in

which the force acts on it.

(15.) It appears, then, that the general nature

of the motion is this : the body describes a curved

B5
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path, of which the first part has the same direc-

tion as the line in which it is projected. The cir-

cumstances of the motion of the stone may be cal-

culated with the utmost accuracy from the follow-

ing rule, called the second law of motion, (the

accuracy of which has been established by many

simple experiments, and many inferences from

complicated motion.) If A, fig. 1, is the point

from which the stone was thrown, and A B the

i. 1.

direction in which it was thrown ; and if we wish

to know where the stone will be at the end of any

particular time, (suppose, for instance, three se-

conds,) and if the velocity with which it is thrown

would, in three seconds, have carried it to B, sup-

posing gravity not to have acted on it ; and if gra-

vity would have made it fall from A to C, sup-

posing it to have been merely dropped from the

hand
; then, at the end of three seconds, the stone

really will be at the point D, which is determined

by drawing B D parallel and equal to A C ; and it
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will have reached it by a curved path A D, of

which different points can be determined in the

same way for different instants of time.

(16.) The calculation of the stone's course is

easy, because, during the whole motion of the

stone, gravity is acting upon it with the same force

and in the same direction. The circumstances of

the motion of a body attracted by a planet, or by

the sun, (where the force, as we have before men-

tioned, is inversely proportional to the square of

the distance, and therefore varies as the distance

alters, and is not the same, either in its amount or

in its direction at the point D, as it is at the point

C,) cannot be computed by the same simple me-

thod. But the same method will apply, provided

we restrict the intervals for which we make the cal-

culations to times so short, that the alterations in

the amount of the force, and in its direction, during

each of those times, will be very small. Thus, in

the motion of the earth, as affected by the attrac-

tion of the sun, if we used the process that we have

described, to find where the earth will be at the

end of a month from the present time, the place

that we should find would be very far wrong ;
if

we calculated for the end of a week, since the

direction of the force (always directed to the sun)
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and its magnitude (always proportional inversely

to the square of the distance from the sun) would

have been less altered, the circumstances would

have been more similar to those of the motion of

the stone,, and the error in the place that we

should find would be much less than before ; if we

calculated by this rule for the end of a day, the

error would be so small as to be perceptible only

in the nicest observations
;
and if we calculated for

the end of a minute, the error would be perfectly

insensible.

(17.) Now a method of calculation has been in-

vented, which amounts to the same as making this

computation for every successive small portion of

time, with the correct value of the attractive force,

and the correct direction of force at every particu-

lar portion of time, and finding thus the place

where the body will be at the end of any time that

we may please to fix on, without the smallest error.

The rules to which this leads are simple : but the

demonstration of the rules requires the artifices of

advanced science. We cannot here attempt to

give any steps of this demonstration ; but our plan

requires us to give the results.

(18.) It is demonstrated that if a body (a planet,

for instance) is by some force projected from A,
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fig. 2, in the direction A B, and if the attraction of

the sun, situated at S, begins immediately to act on

\B
c

Fig. 2.

G

it,, and continues to act on it according to the law

that we have mentioned, (that is, being inversely

proportional to the square of its distance from S,

and always directed to S
;) and if no other force

whatever but this attraction acts upon the body ;

then the body will move in one of the following

curves a circle, an ellipse, a parabola, or a hyper-

bola.

In every case the curve will, at the point A, have

the same direction as the line A B
; or, (to use the

language of mathematicians,) A B will be a tan-

gent to the curve at A.

The curve cannot be a circle unless the line A B
is perpendicular to S A, and, moreover, unless the

velocity, with which the planet is projected, is nei-

ther greater nor less than one particular velocity

determined by the length of S A and the mass of

the body S. If it differs little from this particular
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velocity, (either greater or less,) the body will move

in an ellipse ; but if it is much greater, the body

will move in a parabola or a hyperbola.

IfA B is oblique to S A, and the velocity of pro-

jection is small, the body will move in an ellipse ;

but if the velocity is great, it may move in a para-

bola or hyperbola, but not in a circle.

If the body describe a circle, the sun is the

centre of the circle.

If the body describe an ellipse, the sun is not

the centre of the ellipse, but one focus. (The me-

thod of describing an ellipse is to fix two pins in a

board, as at S and H, fig. 3
; to fasten a thread

S P H to them, and to keep this thread stretched

by the point of a pencil, as at P : the pencil will

trace out an ellipse, and the places of the pins S

and H will be the two focuses.)

If the body describe a parabola or hyperbola,

the sun is in the focus.

(19.) The planets describe ellipses which are very

little flattened, and differ very little from circles.
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Three or four comets describe very long ellipses :

and nearly all the others that have been observed

are found to move in curves which cannot be dis-

tinguished from parabolas. There is reason to

think that two or three comets which have been

observed move in hyperbolas. But as we do not

propose, in this treatise, to enter into a discussion

on the motions of comets,, we shall confine our-

selves to the consideration of motion in an ellipse.

(20.) Every thing that has been said respecting

the motion of a planet, or body of any kind, round

the sun, in consequence of the sun's attraction ac-

cording to the law of gravitation, applies equally

well to the motion of a satellite about a planet,

since the planet attracts with a force following the

same law (though smaller) as the attraction of the

sun. Thus the moon describes an ellipse round the

earth, the earth being the focus of the ellipse;

Jupiter's satellites describe each an ellipse about

Jupiter, and Jupiter is in one focus of each of those

ellipses ; the same is true of the satellites of Sa-

turn and Uranus.

(21.) In stating the suppositions on which the

calculations of orbits are made, we have spoken of

a force of attraction, and a force by which a planet

is projected. But the reader must observe that
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the nature of these forces is wholly different. The

force of attraction is one which acts constantly and

steadily without a moment's intermission, (as we

know that gravity to the earth is always acting :)

the force by which the body is projected is one

which we suppose to be necessary at some past

time to account for the planet's motion, but which

acts no more. The planets arc in motion, and it is

of no consequence to our inquiry how they received

this motion, but it is convenient, for the purposes of

calculation, to suppose that, at some time, they re-

ceived an impulse of the same kind as that which

a stone receives when thrown from the hand
; and

this is the wrhole meaning of the term "projectile

force."

(22.) From the same considerations it will ap-

pear that, if in any future investigations we should

wish to ascertain what is the orbit described by a

planet after it leaves a certain point where the velo-

city and direction of its motion are known, we may

suppose the planet to be projected from that point

with that velocity and in that direction. For it is

unimportant by what means the planet acquires its

velocity, provided it has such a velocity there.

(23.) We shall now allude to one of the points

which, upon a cursory view, has always appeared
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one of the greatest difficulties in the theory of

elliptic revolution, but which, when duly considered,

will be found to be one of the most simple and na-

tural consequences of the law of gravitation.

(24.) The force of attraction, we have said, is

inversely proportional to the square of the distance,

and is therefore greatest when the distance is least.

It would seem then, at first sight, that when a

planet has approached most nearly to the sun, as

the sun's attraction is then greater than at any

other time, the planet must inevitably fall to the

sun. But we assert that the planet begins then to

recede from the sun, and that it attains at length

as great a distance as before, and goes on continu-

ally retracing the same orbit. How is this re-

ceding from the sun to be accounted for ?

(25.) The explanation depends on the increase

of velocity as the planet approaches to the point

where its distance from the sun is least, and on the

considerations by which we determine the form of

the curve which a certain attracting force will

cause a planet to describe. In explaining the

motion of a stone thrown from the hand, to which

the motion of a planet for a very small time is ex-

actly similar, we have seen that the deflection of

the stone from the straight line in which it began to
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move is exactly equal to the space through which

gravity could have made it fall in the same time

from rest, whatever were the velocity with which

it was thrown. Consequently, when the stone is

thrown with very great velocity, it will have gone

a great distance before it is much deflected from

the straight line, and therefore its path will be

very little curved; a fact familiar to the experience

of every one. The same thing holds with regard

to the motion of a planet, and thus the curvature

of any part of the orbit which a planet describes

will not depend simply upon the force of the sun's

attraction, but will also depend on the velocity

with which the planet is moving. The greater is

the velocity of the planet at any point of its orbit,

the less will the orbit be curved at that part. Now
if we refer to fig. 2, we shall see that, supposing the

planet to have passed the point C with so small a

velocity that the attraction of the sun bends its

path very much, and causes it immediately to be-

gin to approach towards the sun ; the sun's attrac-

tion will necessarily increase its velocity as it moves

through D, E, and F. For the sun's attractive

force on the planet, when the planet is at D, is act-

ing in the direction D S, and it is plain that (on

account of the small inclination of D E to D S) the
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force pulling in the direction D S, helps the planet

along in its path D E, and thereby increases its

velocity. Just as when a ball rolls down a sloping

bank, the force of gravity (whose direction is not

much inclined to the bank) helps the ball down

the bank, and thereby increases its velocity. In

this manner, the velocity of the planet will be con-

tinually increasing as the planet passes through

D, E, and F ;
and though the sun's attractive force

(on account of the planet's nearness) is very much

increased, and tends, therefore, to make the orbit

more curved, yet the velocity is so much increased

that, on that account, the orbit is not more curved

than before. Upon making the calculation more

accurately, it is found that the planet, after leaving

C, approaches to the sun more and more rapidly

for about a quarter of its time of revolution ; then

for about a quarter of its time of revolution the

velocity of its approach is constantly diminishing :

arid at half the periodic time after leaving C, the

planet is no longer approaching to the sun
; and

its velocity is so great, and the curvature of the

orbit in consequence so small, (being, in fact, ex-

actly the same as at C,) that it begins to recede.

After this it recedes from the sun by exactly the

same degrees by which it before approached it.
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(26.) The same sort of reasoning will show

why, when the planet reaches its greatest distance,

where the sun's attraction is least, it does not

altogether fly off. As the planet passes along

H, K, A, the sun's attraction (which is always

directed to the sun) retards the planet in its

orbit, just as the force of gravity retards a ball

which is bowled up a hill ; and when it has

reached C, its velocity is extremely small ; and,

therefore, though the sun's attraction at C is

small, yet the deflection which it produces in the

planet's motion is (on account of the planet's slow-

ness there) sufficient to make its path very much

curved, and the planet approaches the sun, and

goes over the same orbit as before.

(27.) The following terms will occur perpe-

tually in the rest of this treatise, and it is therefore

desirable to explain them now.

Let S and H, fig. 4, be the focuses of the ellipse

\cp
Fig. 4.

AEDB; draw the line AB through S and H;
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take C the middle point between S and H, and

draw D C E perpendicular to A C B. Let S be that

focus which is the place of the sun, (if we are speak-

ing of a planet's orbit,) or the place of the planet

(if we are speaking of a satellite's orbit.)

Then A B is called the major axis of the ellipse.

C is the centre.

A C or CB is the semi-major axis. This is equal

in length to S D ;
it is sometimes called the mean

distance, because it is half-way between A S (which

is the planet's smallest distance from S) and BS,

(which is the planet's greatest distance from S.)

DE is the minor axis, and D C or C E the semi-

minor axis.

A is called the perihelion, (if we are speaking of

a planet's orbit;) the perigee, (if we are speaking

of the orbit described by our moon about the

earth;) the perijove, (if we are speaking of the

orbit described by one of Jupiter's satellites round

Jupiter;) or the perisaturnium, (if we are speak-

in & of the orbit described by one of Saturn's satel-
o

lites about Saturn.)

B, in the orbit of a planet, is called the aphe-

lion ; in the moon's orbit it is called the apogee ;

in the orbit of one of Jupiter's satellites, we shall

call it the apojove.
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A and B are both called apses; and the line

A B, or the major axis, is sometimes called the line

of apses.

S C is sometimes called the linear excentricity ;

but it is more usual to speak only of the propor-

tion which S C bears to A C, and this proportion,

expressed by a number, is called the excentricity.

Thus, if S C were one-third of A C, we should say,

that the excentricity of the orbit was %, or 0'3333.

If S cyo is drawn towards a certain point in the

heavens, called the first point of Aries, then the

angle <y> S A is called the longitude of perihelion,

(or of perigee, or of perijove, &c.)

If P is the place of the planet in its orbit at any

particular time, then the angle PP S P is its longi-

tude at that time, and the angle ASP is its true

anomaly. (The longitude of the planet is, there-

fore, equal to the sum of the longitude of the peri-

helion, and the true anomaly of the planet.) The

line S P is called the radius vector.

In all our diagrams it is to be understood, that

the planet, or satellite, moves through its orbit in

the direction opposite to the motion of the hands

of a watch. This is the direction in which all the

planets and satellites would appear to move, if

viewed from any place on the north side of the

planes of their orbits.
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The time in which the planet moves from any
one point of the orbit through the whole orbit, till

it comes to the same point again^ is called the

planet's periodic time.

(28.) If we know the mass of the central body,

and if we suppose the revolving body to be pro-

jected at a certain place in a known direction with

a given velocity, the length of the axis major, the

excentricity, the position of the line of apses, and

the periodic time, may all be calculated. We can-

not point out the methods and formulae used for

these, but we may mention one very remarkable

result. The length of the axis major depends only

upon the velocity of projection, and upon the place

of projection, and not at all upon the direction of

projection.

(29.) We shall proceed to notice the principle

on which the motion of a planet, or satellite, in its

orbit is calculated.

It is plain that this is not a very easy business.

We have already explained, that the velocity of

the planet in its orbit is not uniform, (being greatest

when the planet's distance from the sun is least, or

when the planet is at perihelion ;) and it is ob-

vious, that the longitude of the planet increases

very irregularly ; since, when the planet is near to
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the sun, its actual motion is very rapid, and, there-

fore, the increase of longitude is extremely rapid ;

and when the planet is far from the sun, its actual

motion is slow, and, therefore, the increase of longi-

tude is extremely slow. The rule which is demon-

strated by theory, and which is found to apply

precisely in observation, is this : The areas de-

scribed by the radius vector are equal in equal

times. This is true, whether the force be inversely

as the square of the distance from the central body,

or be in any other proportion, provided that it is

directed to the central body.

(30.) Thus, if in one day a planet, or a satellite,

moves from A to a, fig, 5
;

in the next day it will

Fig. 5.

move from a to />, making the area a S b equal to

A S a ; in the third day it will move from b to c,

making the area b S c equal to A S a or a S 6, and

so on.

(31.) Upon this principle mathematicians have

invented methods of calculating the place of a pla-

net, or satellite, at any time for which it may be
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required. These methods are too troublesome for us

to explain here
;
but we may point out the mean-

ing of two terms which are frequently used in these

computations. Suppose, for instance, as in the

figure, that the planet, or satellite,, occupies ten days

in describing the half of its orbit, Aabcdefghi B,

or twenty days in describing the whole orbit ; and

suppose that we wished to find its place at the end

of three days after leaving the perihelion. If the

orbit were a circle, the planet would in three days

have moved through an angle of 54 degrees. If the

excentricity of the orbit were small, (that is, if the

orbit did not differ much from a circle,) the angle

through which the planet would have moved

would not differ much from fifty-four degrees.

The excentricities of all the orbits of the planets

are small
;
and it is convenient, therefore, to begin

with the angle 54 as one which is not very erro-

neous, but which will require some correction.

This angle (as 54), which is proportional to the

time, is called the mean anomaly ; and the cor-

rection which it requires, in order to produce the

true anomaly, is called the equation of the centre.

If we examine the nature of the motion, while the

planet moves from A to B, it will readily be seen,

that, during the whole of that time, the angle really

c
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described by the planet is greater than the angle

.which is proportional to the time, or the equation

of the centre is to be added to the mean anomaly,

in order to produce the true anomaly ; but while

the planet moves in the other half of the orbit,

from B to A, the angle really described by the

planet is less than the angle which is proportional

to the time, or the equation of the centre is to be

subtracted from the mean anomaly, in order to pro-

duce the true anomaly.

(32.) The sum of the mean anomaly and the

longitude of perihelion is called the mean longitude

of the planet. It is evident, that if we add the

equation of the centre to the mean longitude,

while the planet is moving from A to B, or sub-

tract it from the mean longitude, while the planet

is moving from B to A, as in (31.), we shall form

the true longitude.

(33.) The reader will see, that when the

planet's true anomaly is calculated, the length of

the radius vector can be computed from a know-

ledge of the properties of the ellipse. Thus the

place of the planet, for any time, is perfectly

known. This problem has acquired considerable

celebrity under the name of Kepler*s problem.

(34.) There remains only one point to be ex-
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plained regarding the undisturbed motion of

planets and satellites; namely, the relation be-

tween a planet 's periodic time and the dimensions

of the orbit in which it moves.

Now, on the law of gravitation it has been de-

monstrated from theory, and it is fully confirmed

by observation, that the periodic time does not

depend on the excentricity, or on the perihelion

distance, or on the aphelion distance, or on any

element except the mean distance or semi-major

axis. So that if two planets moved round the

sun, one in a circle, or in an orbit nearly circu-

lar, and the other in a very flat ellipse ; provided

their mean distances were equal, their periodic

times would be equal. It is demonstrated also,

that for planets at different distances, the relation

between the periodic times and the mean distances

is the following: The squares of the numbers of

days (or hours, or minutes, &c.) in the periodic

times have the same proportion as the cubes of

the numbers of miles, (or feet, &c.) in the mean

distances.

(35.) Thus the periodic time of Jupiter round

the sun is 4332 -J days, and that of Saturn is

10759-2 days ;
the squares of these numbers are

18772289 and 1 15760385. The mean distance of

c 2
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Jupiter from the sun is about 487491000 miles,

and that of Saturn is about 893955000 miles ;

the cubes of these numbers are 1158496 (20 ci-

phers), and 7144088 (20 ciphers). On trial it

will be found, that 18772289 and 115760385 are

in almost exactly the same proportion as 1158496

and 7144088.

(36.) In like manner, the periodic times of

Jupiter's third and fourth satellites round Jupiter

are 7-15455 and 16-68877 days; the squares of

these numbers are 51-1876 and 278-515. Their

mean distances from Jupiter are 670080 and

1178560 miles; the cubes of these numbers are

300866 (12 ciphers), and 1637029 (12 ciphers),

and the proportion of 51-1876 to 278-515 is

almost exactly the same as the proportion of

300866 to 1637029.

(37.) It must, however, be observed that this

rule applies in comparing the periodic times and

mean distances, only of bodies which revolve round

the same central body. Thus the rules applies in

comparing the periodic times and mean distances

of Jupiter arid Saturn, because they both revolve

round the sun; it applies in comparing the pe-

riodic times and mean distances of Jupiter's third

and fourth satellites, because they both revolve



PERIODIC TIMES ROUND DIFFERENT CENTRES. 29

round Jupiter ;
but it would not apply in com-

paring the periodic time and mean distance of

Saturn revolving round the sun with that of Jupi-

ter's third satellite revolving round Jupiter.

(38.) In comparing the orbits described by

different planets, or satellites, round different cen-

tres of force, theory gives us the following law :

The cubes of the mean distances are in the same

proportion as the products of the mass by the

square of the periodic time. Thus, for instance,

the mean distance of Jupiter's fourth satellite from

Jupiter is 1 1 78560 miles ; its periodic time round

Jupiter is 16-68877 days; the mean distance of

the earth from the sun is 93726900 miles ;
its pe-

riodic time round the sun is 365 %2564 days; also

the mass of Jupiter is -jVy^-th the sun's mass. The

cubes of the mean distances are respectively

1637029 (12 ciphers), and 823365 (18 ciphers);

the products of the squares of the times by the

masses are respectively 0-265252 and 133412;

and these numbers are in the same proportion as

1637029 (12 ciphers), and 823365 (18 ciphers).

(39.) The three rules, that planets move in

ellipses ; that the radius vector in each orbit passes

over areas proportional to the times, and that the

squares of the periodic times are proportional to
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the cubes of the mean distances, are commonly
called Kepler's laws. They were discovered by

Kepler from observation, before the theory of gra-

vitation was invented; they were first explained

from the theory by Newton, about A.D. 1680.

(40.) The last of these is not strictly true, un-

less we suppose that the central body is absolutely

immoveable. This, however, is evidently incon-

sistent with the principles which we have laid

down in Section I. In considering the motion, for

instance, ofJupiter round the sun, it is necessary to

consider, that, while the sun attracts Jupiter, Jupi-

ter is also attracting the sun. But the planets are

so small in comparison with the sun, (the largest

of them, Jupiter, having less than one-thousandth

part of the matter contained in the sun,) that in

common illustrations there is no need to take this

consideration into account. For nice astronomical

purposes it is taken into account in the following

manner: The motion which the attraction of

Jupiter produces in the sun is less than the mo-

tion which the attraction of the sun produces in

Jupiter, in the same proportion in which Jupiter

is smaller than the sun. If the sun and Jupiter

were allowed to approach one another, their rate

of approach would be the sum of the motions
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of the sun and Jupiter, and would, therefore, be

greater than their rate of approach, if the sun

were not moveable, in the same proportion in

which the sum of the masses of the sun and Ju-

piter is greater than the sun's mass. That is, the

rate of approach of the sun and Jupiter, both

being free, is the same as the rate of approach

would be if the sun were fixed, provided the sun's

mass were increased by adding Jupiter's mass to

it. Consequently, in comparing the orbits de-

scribed by different planets round the sun, we

must use the rule just laid down, supposing the

central force to be the attraction of a mass equal

to the sum of the sun and the planet ; and thus

we get a proportion which is rigorously true :,

for different planets, or even for different bodies,

revolving round different centres of force, the

cubes of the mean distances are in the same pro-

portion as the products of the square of the pe-

riodic time by the sum of the masses of the attract-

ing and attracted body.
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Section III. General Notions of Perturbation ; and

Perturbation of the Elements of Orbits.

(41.) WE have spoken of the motion of two bodies

(as the sun and a planet) as if no other attracting

body existed. But, as we have stated in Section

I., every planet and every satellite attracts the sun

and every other planet and satellite. It is plain

now that, as each planet is attracted very differ-

ently at different times by the other planets whose

position is perpetually varying, the motion is no

longer the same as if it was only attracted by the

sun. The planets, therefore, do not move exactly in

ellipses ; the radius vector of each planet does not

pass over areas exactly proportional to the times ;

and the proportion of the cube of the mean distance

to the product of the square of the periodic time

by the sum of the masses of the sun and the planet,

is not strictly the same for all. Still the disturbing

forces of the other planets are so small in com-

parison with the attraction of the sun, that these

laws are very nearly true; and (except for our

moon and the other satellites) it is only by accu-

rate observation, continued for some years^ that the

effects of perturbation can be made sensible.
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(42.) The investigation of the effects of the dis-

turbing forces will consist of two parts: the ex-

amination into the effects of disturbing forces

generally upon the motion of a planet, and the

examination into the kind of disturbing force which

the attraction of another planet produces. We
shall commence with the former

;
we shall suppose

that a planet is revolving round the sun, the sun

being fixed, (a supposition made only for present

convenience,) and that some force acts on the planet

without acting on the sun, (a restriction introduced

only for convenience, and which we shall hereafter

get rid of.)

(43.) The principle upon which we shall ex-

plain the effect of this force is that known to ma-

thematicians by the name of variation of elements.

The planet, as we have said, describes some curve

which is not strictly an ellipse, or, indeed, any

regularly formed curve. It will not even describe

the same curve in successive revolutions. Yet its

motion may be represented by supposing it to have

moved in an ellipse, provided we suppose the ele-

ments of the ellipse to have been perpetually alter-

ing. It is plain that by this contrivance any mo-

tion whatever may be represented. By altering the

c5



34 .
- GRAVITATION.

major axis, the excentricity, and the longitude of

perihelion, we may in many different ways make

an ellipse that will pass through any place of the

planet ;
and by altering them in some particular

proportions, we may, in several ways, make an

ellipse in which the direction of motion at the place

of the planet shall be the same as the direction of

the planet's motion. But there is only one ellipse

which will pass exactly through a place of the

planet, in which the direction of the motion at that

place shall be exactly the same as the direction of

the planet's motion, and in which the velocity (in

order that a body may revolve in that ellipse round

the sun) will be the same as the planet's real velo-

city. The dimensions and position of this ellipse

may be conceived as follows : if at any instant we

suppose the disturbing force to cease, and conceive

the planet to be as it were projected with the velo-

city which it happens to have at that instant, the

attraction of the sun or central body will cause it

to describe the ellipse of which we are speaking.

We shall in future mention this by the name of the

instantaneous
ellipse.

(44.) If the disturbing force ceases, the planet

continues to revolve in the same ellipse, and the
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permanent ellipse coincides with the instantaneous

ellipse corresponding to the instant when the dis-

turbing force ceases.

(45.) If the disturbing force continues to act,

the dimensions of the instantaneous ellipse are

continually changing ; but in the course of a single

revolution, (even for our moon,) the dimensions

alter so little, that the motion in the instantaneous

ellipse corresponding to any instant during that

revolution will very nearly agree with the real

motion during that revolution.

We shall now consider the effects of particular

forces in altering the elements.

(46.) (I.) Suppose that the disturbing force is

always directed to the central body. The effect

of this would be nearly the same as if the attrac-

tion or the mass of the central body was in-

creased. The result of this on the dimensions of

the orbit will be different according to the part

of the orbit where it begins to act, and may be

gathered from the cases to be mentioned sepa-

rately hereafter, (we do not insist on it at pre-

sent, as there is no instance in the planetary

system of such sudden commencement of force.)

But at all events the relation between the mean
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distance and the periodic time will not be the

same as before
; the time will be less for the

same mean distance, or the mean distance

greater for the same periodic time, than if the

disturbing force did not act (38.). If the dis-

turbing force is always directed from the central

body, the effect will be exactly opposite. If the

disturbing force does not alter, except with the

planet's distance, the planet will at every suc-

cessive revolution describe an orbit of the same

size. For, as we have stated, (29.) the radius

vector will in equal times pass over equal areas,

and mathematicians have proved that, if the

variation of force depends only on the distance,

the velocity of the planet will depend only on

the distance ; and the consideration which deter-

mines the greatest or least distance of the planet

is, that the planet, moving with the velocity

which is proper to the distance, cannot describe

the proper area in a short time, unless it move

in the direction perpendicular to the radius vec-

tor. This consideration will evidently give the

same values for the greatest and least distances

at every revolution. It may happen that all the

greatest distances will not be at the same place ;

the body may describe such an orbit as that in

fig. 6.
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F*g. 6.

(47.) (II.) If, however, the disturbing force di-

rected to the central body increases gradually

and constantly during many revolutions, there is

no difficulty in seeing that the planet will at

every revolution be drawn nearer to the central

body, and thus it will move, at every succeeding

revolution, in a smaller orbit than at the preced-

ing one ; and will consequently perform its revo-

lution in a shorter time. If the disturbing force

directed to the central body diminishes, the orbit

will become larger, and the periodic time longer.

In the same manner, if the disturbing force is

directed from the central body, a gradual in-

crease of the disturbing force will increase the

dimensions of the orbit and the periodic time,

and a gradual diminution of the disturbing force

will diminish the dimensions of the orbit and the

periodic time.

(48.) (III.) Suppose that the disturbing force acts

always in the direction in which the planet is
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distance has been altered in the proportion of

10000: 10001, the periodic time will have been

altered in the proportion of 10000 : 10001J

nearly, or the mean motion will have been

altered in the proportion of 10001J to 10000 or

1 : 0*99985 nearly. If this alteration has gone

on uniformly, we may suppose the whole motion

in the 100 revolutions to have been nearly the

same as if the planet had moved with a mean

motion, whose value is half way between the

values of the first and the last, or 0-999925 x the

original mean motion. Therefore, at the time

when we should expect the planet to have made

100 revolutions, it will only have made 99-9925

revolutions, or will be behind the place where we

expected to see it by 0*0075 revolution, or nearly

three degrees; a quantity which could not fail

to be noticed by the coarsest observer. To use

a borrowed illustration, the alteration of the

mean distance in an orbit produces the same

kind of effect as the alteration of the length of

a clock pendulum : which, though so small as

to be insensible to the eye, will, in a few days,

produce a very great effect on the time shown by

the clock.

(50.) (V.) Now suppose the orbit of the planet
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or satellite to be an ellipse ;
and suppose a dis-

turbing force directed to the central body to act

upon the planet, &c. only when it is near its

perihelion or perigee, &c. In fig. 7, let A B be

.-"^^c -..

d

the curve in which the planet is moving, and let

the dotted line B C D A represent the orbit in

which it would have moved if no disturbing force

had acted, C being the place of perihelion. At B
let the disturbing force, directed towards S, begin

to act, and let it act for a little while and then

cease. The planet is at that place approaching

toward the sun, and the direction of its motion

makes an acute angle with SB. It is evident

that the disturbing force, which draws the planet

more rapidly towards the sun without otherwise

affecting its motion, will cause it to move in a

direction that makes a more acute angle with

S B. The part of the new path, therefore, which

is nearest to the sun (that is, the new perihelion)

will be farther from B than the perihelion C of

the orbit in which the planet would have moved.
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distance has been altered in the proportion of

10000:10001, the periodic time will have been

altered in the proportion of 10000 : 10001J

nearly, or the mean motion will have been

altered in the proportion of 10001J to 10000 or

1 : 0'99985 nearly. If this alteration has gone

on uniformly, we may suppose the whole motion

in the 100 revolutions to have been nearly the

same as if the planet had moved with a mean

motion, whose value is half way between the

values of the first and the last, or 0-999925 x the

original mean motion. Therefore, at the time

when we should expect the planet to have made

100 revolutions, it will only have made 99*9925

revolutions, or will be behind the place where we

expected to see it by 0*0075 revolution, or nearly

three degrees; a quantity which could not fail

to be noticed by the coarsest observer. To use

a borrowed illustration, the alteration of the

mean distance in an orbit produces the same

kind of effect as the alteration of the length of

a clock pendulum : which, though so small as

to be insensible to the eye, will, in a few days,

produce a very great effect on the time shown by

the clock.

(50.) (V.) Now suppose the orbit of the planet
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or satellite to be an ellipse ;
and suppose a dis-

turbing force directed to the central body to act

upon the planet, &c. only when it is near its

perihelion or perigee, &c. In/</. 7, let AB be

d

the curve in which the planet is moving, and let

the dotted line B C D A represent the orbit in

which it would have moved if no disturbing force

had acted, C being the place of perihelion. At B
let the disturbing force, directed towards S, begin

to act, and let it act for a little while and then

cease. The planet is at that place approaching

toward the sun, and the direction of its motion

makes an acute angle with SB. It is evident

that the disturbing force, which draws the planet

more rapidly towards the sun without otherwise

affecting its motion, will cause it to move in a

direction that makes a more acute angle with

S B. The part of the new path, therefore, which

is nearest to the sun (that is, the new perihelion)

will be farther from B than the perihelion C of

the orbit in which the planet would have moved.



42 GRAVITATION.

The reader's conception of this will be facilitated

by supposing the orbit instead of a curve to be

a straight line, and the place of perihelion to be

determined by letting fall a perpendicular from

the sun upon the line ; when it will be seen that,

on drawing the line more acutely inclined to S B,

the distance of the foot of the perpendicular from

B is increased. With a curved orbit the result is

just the same. In other words, the planet, instead

of describing B C, will, in consequence of the

action of the disturbing force, describe Be; and

the place of perihelion, instead of C, will be c, a

point more distant from B than C is. Now, if the

disturbing force should not act again, the planet

would move in an ellipse cdb, and the line of

apses, instead of CSD, would be cSd. The

line of apses has therefore twisted round in the

same angular direction as that in which the planet

was going; and this is expressed by saying that

the line of apses progresses. If, after passing c,

the disturbing force should again act for a little

while, at e for instance, the recess of the planet

from the sun would be diminished, its path would

be more nearly perpendicular to the radius vec-

tor, and therefore the inclination of the path

would be such as corresponds to a smaller dis-

tance from perihelion than the planet really has.
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That is, when the planet leaves e, the inclination

of its path to the radius vector is greater than

it would have been ifthe planet had continued to

move in the orbit c d b, but is the same as if its

perihelion had been at some such situation as f,

supposing no disturbing force to act. Now let

the disturbing force cease entirely to act
;
and

the planet, which at eis moving as if it had come

from the perihelionff will continue to move as if

it had come from the perihelion /; it will pro-

ceed, therefore, to describe an elliptic orbit in

which / S g is the line of apses : the line of apses

has been twisted round in the same direction as

before, or the line of apses has still progressed.

The effect then of a disturbing force directed to

the central body before and after passing the pe-

rihelion, is to make the line of apses progress *.

* This result, and those which follow immediately, may be in-

ferred from the construction in Newton's '

Principia,' book i. sect. 3,

prop. xvii. If we assume (as we suppose in all these investigations)

the excentricity to be small, the disturbing force directed to the sun

will not sensibly alter the planet's velocity, but will change the

direction of its path at P, the place of action, (in Newton's figure ;)

the length of P H, therefore, will not be altered, (since that length

depends only on the velocity,) but its position will be altered, the

position of P H being determined by making the angle R P II

equal to the supplement of R P S. On trying the effects of this in

different positions of P, and observing that the immediate effect of

a disturbing force directed to the centre is to increase the rate of

*
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(51.) In the same manner it will be seen, that

the effect of a disturbing force, directed from the

central body before and after passing the perihe-

lion, is to make the line of apses regress.

(52.) The motion of the planet, subject to such

forces as we have mentioned, would be nearly the

same as if it was revolving in an elliptic orbit, and

this elliptic orbit was at the same time revolving

round its focus, turning in the same direction as

that in which the planet goes round, and always

carrying it on its circumference. And this is the

easiest way of representing to the mind the general

effect of this motion ; the physical cause is to be

sought in such explanations as that above.

(53.) (\
7

I.) Suppose a disturbing force directed

to the centre, to act upon the planet when it is

near aphelion. As the planet is going towards

aphelion it is receding from the sun. The

effect of the disturbing force is to diminish the

rate of recess from the sun
; and, therefore, to in-

crease the inclination of the planet's path to the

radius vector. The aphelion is the place where

approach, or to diminish the rate of receding, and that the effect of

a force directed from the centre is the opposite, all the cases in the

text will be fully explained.
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the planet's path is perpendicular to the radius

vector. The effect of the disturbing force., then.,

which increases the inclination of the planet's

path to the radius vector, will be to make that

path perpendicular to the radius vector sooner

than if the disturbing force had not acted. That

is, the planet will be at aphelion sooner than it

would have been if no disturbing force had

acted. The aphelion has, as it were, gone

backwards to meet the planet. If the disturb-

ing force should entirely cease, the planet will

move in an elliptic orbit, of which this new

aphelion would be the permanent aphelion. The

line passing through the aphelion has, there-

fore, twisted in a direction opposite to the pla-

net's motion, or the line of apses has regressed.

After passing aphelion, if the disturbing force

still continues to act, the planet's approach to

the sun will be quickened by the disturbing

force, and, therefore, after some time, the pla-

net's rate of approach will be greater than that

corresponding, in an undisturbed orbit, to its

actual distance from aphelion, and will be

equal to that corresponding in an undisturbed

orbit to a greater distance from aphelion. If,

now, the disturbing force ceases, the planet,
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moving as if it came in an undisturbed orbit

from an imaginary aphelion, will continue to

move as if it came from that imaginary aphe-

lion ; and that imaginary aphelion having been

at a greater distance behind the planet than the

real aphelion, its place will be represented by

saying that the line of apses has still regressed.

The effect, then, of a disturbing force directed

to the central body, before and after passing

aphelion, is to make the line of apses regress.

(54.) In the same manner it will be seen, that

the effect of a disturbing force, directed from the

central body, before and after passing the aphelion,

is to make the line of apses progress.

(55.) (VII.) Since a disturbing force, directed to

the central body, or one directed from the cen-

tral body, produces opposite effects with regard

to the motion of the line of apses, according as

it acts near perihelion or near aphelion, it is easy

to perceive that there must be some place be-

tween perihelion and aphelion, where the dis-

turbing force, directed to the central body, will

produce no effect on the position of the line of

apses. It is found by accurate investigation,
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that this point is the place where the radius

vector is perpendicular to the line of apses *.

(56.) (VIII.) The effects mentioned above are

greatest when the excentricity is small. Thus,

if we compared two orbits,, as figures 8 and 9,

in one of which the excentricity was great, and

in the other small
;
and if (for instance) we

supposed the disturbing force to act for a short
c c

Fig. 8. Fig. 9.

time at the perihelion G, and supposed the

forces in the two orbits to be such as to deflect

* To the reader who is familiar with Newton's "
Principia,"

sect. 3, the following demonstration will be sufficient : The dis-

turbing force, which is entirely in the direction of the radius

vector, will not alter the area described in a given time, and, there-

fore, will not alter the latus rectum (to the square root of which

the area is proportional.) But half the latus rectum of the undis-

turbed orbit is the radius vector at the supposed place of action of

the disturbing force (since that radius vector is supposed perpendi-

cular to the major axis.) Therefore, half the latus rectum of the new

orbit is the radius vector at the point in question ; and, conse-

quently, the radius vector, at the point in question, is perpendi-
cular to the major axis in the new orbit ; but it was so in the un-

disturbed orbit ; and, therefore, the major axes in the new orbit

and the undisturbed orbit coincide.
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the new paths from the old orbits by equal

angles in the two cases
;

it is plain, that in

fig. 8, in consequence of the curvature at C

differing much from that of a circle whose centre

is S, we should find the new perihelion c at a

small distance from C; whereas in fig. 9, where

the orbit does not differ much from the circle

whose centre is S, c would be far removed from

C. In fact, c would in both cases bisect the part

of the orbit lying within that circle ;
and it is

evident, that the angle at C being the same in

both, the length of the part lying within the

circle would be much less in fig. 8, where the

orbit is almost a straight line, than in fig. 9,

where the curvature of the orbit differs little

from that of the circle. Or we may state it

thus : The alteration of the place of perihelion,

or aphelion, depends on the proportion which

the alteration in the approach or recess produced

by the disturbing force bears to the whole ap-

proach or recess; and is, therefore, greatest

when the whole approach or recess is least;

that is, when the orbit is little excentric.

(57.) (IX.) To judge of the effect which a dis-

turbing force, directed to the sun, will produce

on the excentricity of a planet's orbit, let us
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suppose the planet to have left its perihelion, and

to be moving towards aphelion, and, conse-

quently, to be receding from the sun, and now

let the disturbing force act for a short time.

This will cause it to recede from the sun more

slowly than it would have receded without the

action of the disturbing force; and, conse-

quently, the planet, without any material altera-

tion in its velocity, (and, therefore, without any
material alteration in the major axis of its

orbit (28),) will be moving in a path more in-

clined to the radius vector than if the disturbing

force had not acted. The planet may, there-

fore, be considered as projected from the point

P^jficj. 10., in the direction A b instead of AB,
in which it was moving ; and, therefore, instead

Fig. 10.

of describing the orbit A C G, in which it was

moving before, it will describe an orbit A c g,

more resembling a circle, or less excentric than

D
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before. The effect, therefore, of a disturbing

force directed to the centre, while a planet is

moving from perihelion to aphelion, is to diminish

the excentricity of the orbit.

(58.) If we suppose the planet to be moving

from aphelion to perihelion, it is approaching to

the sun ; the disturbing force directed to the sun

makes it approach more rapidly; its path is,

therefore, less inclined to the radius vector than

it would have been without the disturbing force ;

and this effect may be represented by supposing

that at E, fig. 11., instead of moving in the direc-

tion E F in which it was moving, the planet is pro-

Fig. 11.

jected in the direction E/. Instead, therefore, of

describing the ellipse E G H, in which it was mov-

ing before, it will describe such an ellipse as E g h,

which is more excentric than the former. The

effect, therefore, of a disturbing force directed to

the centre, while a planet is moving from aphelion
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to perihelion, is to increase the excentricity of the

orbit.

(59.) In a similar manner it will appear, that

the effect of a disturbing force, directed from the

centre, is to increase the excentricity as the planet

is moving from perihelion to aphelion, and to dimi-

nish it as the planet moves from aphelion to peri-

helion.

(60.) (X.) Let us now lay aside the consideration

of a force acting in the direction of the radius

vector, and consider the effect of a force acting

perpendicularly to the radius vector, in the direc-

tion in which the planet is moving, And first, its

effect on the position of the line of apses,

(61.) If such a force act at one of the apses,

either perihelion or aphelion, for a short time, it is

clear that its effect will be represented by supposing

that the velocity at that apse is suddenly increased,

or that the velocity with which the planet is pro-

jected from perihelion is greater than the velocity

with which it would have been projected if no dis-

turbing force had acted. This will make no dif-

ference in the position of the line of apses; for

with whatever velocity the planet is projected, if it

D2
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is projected in a direction perpendicular to the

radius vector, (which is implied in our supposition,

that the place where the force acts was an apse in

the old orbit,) the place of projection will infal-

libly be an apse in the new orbit ; and the line

of apses, which is the line drawn from that point

through the centre, will be the same as before.

(62.) But if the force act for a short time be-

fore the planet reaches the perihelion, its prin-

cipal
* effect will be to increase its velocity ; the

sun's attraction will, therefore, have less power to

curve its path (25.) ;
the new orbit will be, in that

part, exterior to the old one. In fig. 12., we must,

...G

Fig. 12.

therefore, suppose that the planet, after leaving A,

where the force has acted to accelerate its motion,

* It is supposed here, and in all our investigations, that the

excentrichy of the orbit is small, and, consequently, that a force

perpendicular to the radius vector produces nearly the same effect

as a force acting in the direction of a tangent to the ellipse.
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instead of describing the orbit A C G, proceeds to

describe the orbit A c d, which at A has the same

direction (or has the same tangent A B) as the

orbit A C G. It is plain now that c is the part

nearest to the sun, or c is the perihelion : and it

is evident here, that the line of apses has altered

its position from S C to S c, or has twisted in a

direction opposite to the angular motion of the

planet, or has regressed.

(63.) If the force act for a short time after the

planet has passed perihelion, as at D in fig. 13,

the planet's velocity is increased there, and the

path described by the planet is D/, instead of

Fig. 13.

D F, having the same direction at D, (or having

the same tangent D E,) but less curved, and, there-

fore, exterior to D F. If now we conceive the pla-

net to have received the actual velocity with which

it is moving in D f, from moving without disturb-

ance in an elliptic orbit c D/ (which is the orbit
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that it will now proceed to describe, if no disturb-

ing force continues to act,) it is evident that the

part c D must be described with a greater velocity

than C D, inasmuch as the velocity at D from

moving in c D is greater than the velocity from

moving in C D ; c D is, therefore, less curved than

C D, and, therefore, exterior to it, (since it has the

same direction at D ;) and then the perihelion is

some point in the position of c, and the line of apses

has changed its direction from S C to S c, or has

twisted round in the same direction hi which the

planet is moving, or has progressed.

(64.) If the force act for a short time before

passing aphelion, it will be seen in the same man-

ner that the line of apses is made to progress. It

is only necessary to consider that (as before) the

new orbit has the same direction at the point H,

fig. 14, where the force has acted as the old one,

Fig. 14.

but is less curved, and, therefore, exterior to it ;

and the aphelion, or point most distant from the
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sun., is g instead of G, and the position of the line

of apses has shifted from S G to S g. If the force

act after the planet has passed aphelion, as at K,

fig. 15, the orbit in which we must conceive the

planet to have come, in order to have the increased

velocity, must be g K exterior to G K ;
the point

Fig. 15. K

most distant from the sun must be g instead of G,

and the line of apses must have changed from S G
to S g, or must have regressed.

(65.) Collecting these conclusions*, we see that,

if a disturbing force act perpendicularly to the ra-

dius vector, in the direction in which the planet

is moving, its action, while the planet passes from

perihelion to aphelion, causes the line of apses to

progress ;
and its action, while the planet passes

* These conclusions, and those that follow, will be easily in-

ferred from Newton's construction, Prop. XVII., by observing,

that an increase of the velocity increases the length of P H in

Newton's figure without altering its position.
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from aphelion to perihelion, causes the apses to

regress.

(66.) By similar reasoning, if the direction of

the disturbing force is opposite to that in which

the planet is moving, its action, while the planet

passes from perihelion to aphelion, causes the line

of apses to regress, and while the planet passes

from aphelion to perihelion causes the apses to

progress*

(67.) (XL) For the effect on the excentricity :

suppose the disturbing force, increasing the velo-

city, to act for a short time at perihelion ;
the

effect is the same as if the planet were projected

from perihelion with a greater velocity than that

which would cause it to describe the old orbit.

The sun's attraction, therefore, will not be able

to pull it in into so small a compass as before ;

and at the opposite part of its orbit, that is,

at aphelion, it will go off to a greater distance

than before; but as it is moving without dis-

turbance, and, therefore, in an ellipse, it will

return to the same perihelion. The perihelion

distance, therefore, remaining the same, and

the aphelion distance being increased, the ine-

quality of these distances is increased, and the
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orbit, therefore, is made more excentric. Now,

suppose the force increasing the velocity to act

at aphelion. Just as before, the sun's attraction

will be unable to make the planet describe an

orbit so small as its old orbit, and the distance

at the opposite point (that is, at perihelion) will

be increased ;
but the planet will return to the

same aphelion distance as before. Here, then,

the inequality of distances is diminished, and

the excentricity is diminished.

(68.) Thus we see that a disturbing force, act-

ing perpendicularly to the radius vector, in the

direction of the planet's motion, increases the ex-

centricity if it acts on the planet near perihelion,

and diminishes the excentricity if it acts on the

planet near aphelion. And, similarly, if the force

acts in the direction opposite to that of the planet's

motion, it diminishes the excentricity by acting

near perihelion, and increases it by acting near

aphelion.

(69.) (XII.) In all these investigations, it is sup-

posed that the disturbing force acts for a very

short time, and then ceases. In future, we

shall have to consider the effect of forces, which

D5
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act for a long time, changing in intensity, but

not ceasing. To estimate their effect we must

suppose the long time divided into a great num-

ber of short times ; we must then infer, from the

preceding theorems, how the elements of the

instantaneous ellipse (43.) are changed in each

of these short times by the action of the force,

which is then disturbing the motion; and we

must then recollect, that the instantaneous

ellipse, at the end of the long time under con-

sideration, will be the same as the permanent

ellipse in which the planet will move, if the

disturbing force then ceases to act (43.), and

that it will, at all events, differ very little from

the curve described in the next revolution of the

planet, even if the disturbing force continue to

act (41.)

SECTION IV. On the Nature of the Force dis-

turbing a Planet or Satellite, produced by the

Attraction of other Bodies.

(70.) HAVING examined the effects of disturbing

forces upon the elements of a planet's or satellite's

orbit, we have now to inquire into the kind of the
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disturbing force which the attraction of another

body produces. The inquiry is much simpler

than might at first sight be expected ; and this

simplicity arises, in part, from the circumstance

that (as we have mentioned in (6.) ) the attraction

of a planet upon the sun is the same as its attrac-

tion upon another planet, when the sun and the

attracted planet are equally distant from the at-

tracting planet.

(71.) First, then, we have to remark, that the

disturbing force is not the whole attraction. The

sun, for instance, attracts the moon, and disturbs

its elliptic motion round the earth ; yet the force

which disturbs the moon's motion is not the whole

attraction of the sun upon the moon. For the

effect of the attraction is to move the moon from

the place where it would otherwise have been
; but

the sun's attraction upon the earth also moves the

earth from the place where it would otherwise have

been ; and if the alteration of the earth's place is

exactly the same as the alteration of the moon's

place, the relative situation of the earth and moon

will be the same as before. Thus, if, in fig. 16,

any attraction carries the earth from E to e, and

carries the moon from M to m, and if E e is equal

and parallel to M m, then e m, which is the dis-
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tance of the earth and moon, on the supposition

that the attraction acts on both, is equal to E M,

Fig. 16.

which is their distance, on the supposition that the

attraction acts on neither ; and the line e m, which

represents the direction in which the moon is seen

from the earth, if the attraction acts on both, is

parallel to E M, which represents the direction in

which the moon is seen from the earth, if the at-

traction acts on neither. The distance, therefore, of

the earth and moon, and the direction in which the

moon is seen from the earth, being unaltered by

such a force, their relative situation is unaltered.

An attraction, therefore, which acts equally, and

in the same direction, on both bodies, does not

disturb their relative motions.

From this we draw the two following important

conclusions :

(72.) Firstly. A planet may revolve round the

sun, carrying with it a satellite, and the satellite

may revolve round the planet in nearly the same
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manner as if the planet was at rest. For the

attraction of the sun on the planet is nearly the

same as the attraction of the sun on the satellite.

It is true that they are not exactly the same,

and the effects of the difference will soon form

an important subject of inquiry; but they are,

upon the whole., very nearly the same. The

moon is sometimes nearer to the sun than the

earth is, and sometimes farther from the sun ;

and, therefore, the sun's attraction on the moon

is sometimes greater than its attraction on the

earth, and sometimes less
; but, upon the whole,

the inequality of attractions is very small. It is

owing to this that we may consider a satellite

as revolving round a planet in very nearly the

same manner (in respect of relative motion) as

if there existed no such body as the sun.

(73.) Secondly. The force which disturbs the mo-

tion of a satellite, or a planet, is the difference

of the forces (measured, as in (4.), by the spaces

through which the forces draw the bodies re-

spectively) which act on the central and the

revolving body. Thus, if the moon is between

the sun and the earth, and if the sun's attrac-

tion in a certain time draws the earth 200 inches,

and in the same time draws the moon 201
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inches, then the real disturbing force is the

force which would produce in the moon a mo-

tion of one inch from the earth.

(74.) In illustrating the second remark, we have

taken the simplest case that can well be imagined.

If, however, the moon is in any other situation

with respect to the earth, some complication is

introduced. Not only is the moon's distance from

the sun different from the earth's distance, (which

according to (9.) produces an inequality in the at-

tractions upon the earth and moon,) but also the

direction in which the attraction acts on the earth

is different from the direction in which it acts on

the moon, (inasmuch as the attraction always acts

in the direction of the line drawn from the at-

tracted body to the attracting body ; and the lines

so drawn from the earth and moon to the sun are

in different directions.) The same applies in

every respect to the perturbation which one planet

produces in the motion of a second planet round

the sun, and which depends upon the difference in

the first planet's attractions upon the sun and upon

the second planet. To overcome this difficulty we

must have recourse to geometrical considerations.

In fig. 17., let Bj be a body revolving about A, and
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C

let C be another body whose attraction disturbs

the motion of B L round A. The attraction of C

will in a certain time draw A to a ; it will in the

same time draw E
l
to b^ Make E

1
d

1 equal and

parallel to A a; then ad^ will be equal and paral-

lel to A B
1

. Now if the force upon B
x
were such

as to draw it to dlf the motion of B
1
round A

would not be disturbed by that force. But the

force upon B! is really such as to draw it to b^
The real disturbing force then may be represented

as a force which draws the revolving body from dv

to 6
1

. If, instead of supposing the revolving body

to be at B
x
we suppose it at B 2, and if the attrac-

tion of C would draw it through B
2
6
2 while it

draws A through A a, then (in the same manner,

making B 2
d

2 equal and parallel to A a) the real

disturbing force may be represented by a force

which in the same time would draw B
2 through

<*.&*.

(75.) Both the magnitude and the direction of

this force are continually varying, and we must, if
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possible, find a convenient way of representing it.

We shall have recourse here to the "
composition

Fig. 18.

of motion." In fig. 18., if d b represent the space

through which a force has drawn a body in a cer-

tain time, the same effect may be produced by two

forces of which one would in the same time draw

the body from d to e, and the other would in the

same time draw the body from e, to b. And this

is true whatever be the directions and lengths of

d e and e b, provided that with d b they form a tri-

angle. To accommodate the investigations of this

Section to those of Section III., we will suppose de

perpendicular to the radius vector, and eb parallel

to the radius vector. In fig. 17. draw de per-

pendicular to A B or a d, and e b parallel to A B
or a d ; and now we can say : the disturbing force

produced by the attraction of C is a force repre-

sented by de perpendicular to the radius vector,

and a force represented by e b in the direction of

the radius vector.

(76.) We now want nothing but estimations of

the magnitudes of these forces in order to apply
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the investigations of Section III. For the present

we shall content ourselves with pointing out some

of the most interesting cases.

(77.) I. Let the disturbing body be exterior to the

orbit of the disturbed body : (this applies to

the disturbance of the moon's motion produced

by the sun's attraction, the disturbance of the

earth's motion by Jupiter's attraction, the dis-

turbance of the motion of Venus by the earth's

Fig. 19. C I dB A

attraction, &c.
:)

and first, let the revolving

body B be between the disturbing body C and

the central body A (as in fig. 19.) If the attrac-

tion of C will in a certain time draw A to a,

it will in the same time draw B to 6, where B 6

is much greater than A a. Take B d equal to

A a, then d b is the effect of the disturbing

force, which tends to draw B further from A.

In this case then, the disturbing force is entirely

in the direction of the radius vector, and directed

from the central body. This is the greatest dis-

turbing force that can be produced by C.

(78.) II. Let CAB
(fig. 20.) be in the same
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Fig- 20. C a A d
t
E

I*

straight line, but let B be on the side of A, oppo-

site to C. In this case B b is less than A a; and

if B c? is taken equal to A a, the disturbing force

represented by db will be entirely in the direc-

tion of the radius vector, and directed from the

central body. This case is particularly deserving

of the reader's consideration, as the effectual dis-

turbing force is exactly opposite to the attraction

which C actually exerts upon B.

(79.) III. The disturbing force in the case repre-

sented in fig. 19. is much greater than that in

the case of fig. 20., except C be very distant.

Thus, suppose A B to be half of A C. In the

first case, the attraction upon B (by the law of

gravitation) is four times as great as the attrac-

tion upon A, and therefore the disturbing force

(which is the difference of the forces on A and

B) is three times as great as the attraction upon

A. In the second case, the distance of B is f of

the distance of A, and therefore the attraction

upon B is f of the attraction upon A, and - the

disturbing force is f of the attraction upon A.

The disturbing force in the first case is, therefore,
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greater than in the second case, in the proportion

of 3 to
!-,

or 27 to 5. This remark applies to

nearly all the cases of planetary disturbance

where the disturbing planet is exterior to the orbit

of the disturbed planet, the ratio between these

distances from the sun being a ratio of not very

great inequality. But it scarcely applies to the

moon. For the sun's distance from the earth is

nearly 400 times the moon's distance: conse-

quently when the moon is between the sun and

the earth, the attraction of the sun on the moon

is (|4-)* X the attraction of the sun on the earth,

or -rfiHHHr Parts of the sun's attraction on the

earth, and the disturbing force therefore is T&VTST

parts of the sun's attraction on the earth : but

when the moon is on that side farthest from

the sun, the sun's attraction on the moon is

() or -Hnnrrr parts of the sun's attraction on

the earth, and the disturbing force is TFVTrVr

parts of the sun's attraction on the earth, which

is very little less than the former. The effects of

the difference are, however, sensible.

dp^B

%.!!,
'' l

V
a A
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(80.) IV. Suppose B, fig. 26\ to be in that part of

its orbit which is at the same distance from C as

the distance of A from C. The attraction of C

upon the two other bodies, whose distances are

equal,, will be equal, but not in the same direction.

B b, therefore, will be equal to A a. But since

C B is also equal to C A, it is evident that a b

will be parallel to A B, and therefore b will be in

the line ad. Consequently in this case also the

disturbing force will be entirely in the direction

of the radius vector : but here, unlike the other

cases, the disturbing force is directed towards

the central body. The magnitude of the dis-

turbing force bears the same proportion to the

whole attraction on A which b d bears to B b} or

A B to A C. Thus, in the first numerical in-

stance taken above, the disturbing force in this

part of the orbit is j- of the attraction on A : and

in the second numerical instance, the disturbing

force is T F of the attraction on A. It is im-

portant to observe that in both instances the

disturbing force, when wholly directed to the

centre, is much less than either value of the

disturbing force when wholly directed from the

centre: in the latter instance it is almost exactlv

one-half.
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(81.) When the disturbing body is distant, the

point of the orbit which we have here considered is

very nearly that determined by drawing A B per-

pendicular to C A.

(82.) V. When C is distant, (as in the case of the

moon disturbed by the sun,) the disturbing

forces mentioned in (III.) and (IV.) are nearly

proportional to the distance of the moon from the

earth. For the force mentioned in (IV.) this is

exactly true, whether C be near or distant, be-

cause (as we have found) the disturbing force

bears the same proportion to the whole attrac-

tion on A which A B bears to A C. With regard

to the force mentioned in (III.) ;
if we suppose

the moon's distance from the earth to be T J-

of the sun's distance, the disturbing force when

the moon is between the earth and the sun is

TT-sHHrr parts of the sun's attraction on the earth,

or nearly g-io-th part. But if we suppose ^the

moon's distance from the earth to be ?wth of the

sun's distance, the attraction on the moon (when

between the earth and the sun) would be (-f-f-f)
8

or 4-HK- parts of the attraction on the earth;

the disturbing force, or the difference of attrac-

tions on the earth and moon, would be ^lfTT> or
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nearly ilo-th part of the sun's attraction on the

earth. Thus, on doubling the moon's distance

from the earth, the disturbing force is nearly

doubled : and in the same manner, on altering

the distance in any other proportion, we should

find that the disturbing force is altered in nearly

the same proportion.

(83.) VI. If, while the moon's distance from the

earth is not sensibly altered, the earth's dis-

tance from the sun is altered, the disturbing

force is diminished very nearly in the same

ratio in which the cube of the sun's distance is

increased. For if the sun's distance is 400 times

the moon's distance, and the moon between the

earth and the sun, we have seen that the dis-

turbing force is nearly. Tiro-th part of the sun's

attraction on the earth at that distance of the

sun. Now, suppose the sun's distance from the

earth to be made 800 times the moon's distance,

or twice the former distance : the sun's distance

from the moon will be 799 times the moon's dis-

tance, or Iff parts of the sun's former distance

from the earth ; the attractions on the earth and

moon respectively will be ^ and -^-glfr parts of

the former attraction on the earth : and the dis-

turbing force, or the difference between these, will
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be TTTTO-T^ or nearly -nnrirth part of the former

attraction of the earth. Thus, on doubling the

sun's distance, the disturbing force is diminished

to 4-th part of its former value
;
and a similar

proposition would be found to be true if the

sun's distance were altered in any other pro-

portion.

(84.) VII. Suppose B to have moved from that

part of its orbit where its distance from C is

equal to A's distance from C, towards the part

where it is between A and C. Since at the point

where B's distance from C is equal to A's dis-

tance from C, the disturbing force is in the di-

rection of the radius vector, and directed towards

A, and since at the point where B is 'between A
and C, the disturbing force is in the direction of

the radius vector, but directed/rom A, it is plain

that there is some situation of B, between these

two points, in which there is no disturbing force

at all in the direction of the radius vector. On

this we shall not at present speak further : but

we shall remark that there is a disturbing force

perpendicular to the radius vector, at every such

intermediate point. This will be easily seen

from the second case of fig. 17. On going

through the reasoning in that place it will ap-
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pear that, between the two points that we have

mentioned, there is always a disturbing force

c?2 ez perpendicular to the radius vector, and in the

same direction in which the body is going. If

now we construct a similar figure for the situa-

tion fS^fig. 22., in which B is moving from the

C a A

Fig. 22.

dl B4

point between C and A to the other point whose

distance from C is equal to A's distance from C,

we shall find that there is a disturbing force d3 e3

perpendicular to the radius vector, in the direc-

tion opposite to that in which B is going. If we

construct a figure for the situation B4 in which

B is moving from the point of equal distances, to

the point where B is on the side of A opposite to

C, we shall see that there is a disturbing force

perpendicular to the radius vector, in the same

direction in which B is going ;
and in the same

manner, for the situation B
t
in fig. 17. where B

is moving from the point on the side of A oppo-

site C to the next point of equal distances, there

is a disturbing force perpendicular to the radius
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vector, in the direction opposite to that in which

B is going.

(85.) The results of all these cases may be col-

lected thus. The disturbing body being exterior

to the orbit of the revolving body, there is a dis-

turbing force in the direction of the radius vector

only, directed from the central body, at the points

where the revolving body is on the same side of

the central body as the disturbing body, or on the

opposite side, (the force in the former case being

the greater,) and directed to the central body, at

each of the places where the distance from the dis-

turbing body is equal to the distance of the central

body from the disturbing body. The force directed

to the central body at the latter points, is however

much less than the force directed from it at the

former. Between the adjacent pairs of these four

points there are four other points, at which the

disturbing force in the direction of the radius

vector is nothing. But while the revolving body
is moving from one of the points, where it is on

the same side of the central body as the disturbing

body, or on the opposite side, to one of the equi-

distant points, there is always a disturbing force

perpendicular to the radius vector tending to re-
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tarcl it
; and while it is moving from one of the

equi-distant points to one of the points on the same

side of the central body as the disturbing body, or

the opposite, there is a disturbing force perpendi-

cular to the radius vector tending to accelerate it.

(86.) VIII. Now, let the disturbing body be

supposed interior to the orbit of the revolving

body, (as, for instance, when Venus disturbs the

motion of the earth.) If B is in the situation

&i,fig. 23, the attraction of C draws A strongly

towards B
:,

and Bi strongly towards A, and,

Fig. 23. / \

B1

therefore, there is a very powerful disturbing

force drawing B.,,
towards A. If B is in the

situation B
3 ,

the attraction of C draws A

strongly from B
3 , and draws B

3 feebly towards

A; therefore, there is a small disturbing force

drawing B
3

from A. At some intermediate

points the disturbing force in the direction of

the radius vector is nothing. With regard to



DISTURBING BODY INTERIOR TO THE ORBIT. 75

the disturbing force perpendicular to the radius

vector: if A C is greater than ^AB X , it will

be possible to find two points,, B
2

and B
4 ,

whose distance from C is equal to the distance

of A from C, and there the disturbing force per-

pendicular to the radius vector is nothing (or

the whole disturbing force is in the direction of

the radius vector). While B moves from the

position B x
to B , it will be seen by such reason-

ing as that of (75.) and (84.), that the disturb-

ing force, perpendicular to the radius vector,

retards B's motion ;
while B moves from B to

B
3 , it accelerates B's motion; while B moves

from B
3
to B

4
it retards B's motion; and while

B moves from B
4

to B
1 , it accelerates B's mo-

tion. But if AC is less than \ A B
1? there

are no such points, B 2
B 4 , as we have spoken

of; and the disturbing force, perpendicular to

the radius vector, accelerates B as it moves from

B
l
to B

2 , and retards B as it moves from

B.toB,.
We shall now proceed to apply these general prin-

ciples to particular cases.
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SECTION V. Lunar Theory.

(87.) THE distinguishing feature in the Lunar

Theory is the general simplicity occasioned by the

great distance of the disturbing body (the sun

alone producing any sensible disturbance), in pro-

portion to the moon's distance from the earth.

The magnitude of the disturbing body renders

these disturbances very much more conspicuous

than any others in the solar system ; and, on this

account, as well as for the accuracy with which

they can be observed, these disturbances have,

since the invention of the Theory of Gravitation,

been considered the best tests of the truth of the

theory.

Some of the disturbances are independent of the

excentricity of the moon's orbit; others depend, in

a very remarkable manner, upon the excentricity.

We shall commence with the former.

(88.) The general nature of the disturbing force

on the moon may be thus stated. (See (77.) to

(86.) )
When the moon is either at the point be-

tween the earth and sun, or at that opposite to the

sun (both which points are called syzygies), the

force is entirely in the direction of the radius vec-
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tor, and directed from the earth. When the moon

is (very nearly) in the situations at which the radius

vector is perpendicular to the line joining the earth

and sun (both which points are called quadra-

tures), the force is entirely in the direction of the

radius vector, and directed to the earth. At cer-

tain intermediate points there is no disturbing force

in the direction of the radius vector. Except at

syzygies and quadratures, there is always a force

perpendicular to the radius vector, such as to

retard the moon while she goes from syzygy to

quadrature, and to accelerate her while she goes

from quadrature to syzygy.

(89.) I. As the disturbing force, in the direction

of the radius vector, directed from the earth, is

greater than that directed to the earth, we may
consider that, upon the whole, the effect of the

disturbing force is to dimmish the earth's attrac-

tion. Thus the moon's mean distance from the

earth is less (see (46.) )
than it would have been

with the same periodic time, if the sun had not

disturbed it. The force perpendicular to the

radius vector sometimes accelerates the moon,

and sometimes retards it, and, therefore, pro-

duces no permanent effect.
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(90.) II. But the sun's distance from the earth is

subject to alteration, because the earth revolves

in an elliptic orbit round the sun. Now, we

have seen (83.) that the magnitude of the dis-

turbing force is inversely proportional to the

cube of the sun's distance ; and, consequently, it

is sensibly greater when the earth is at perihe-

lion than when at aphelion. Therefore, while

the earth moves from perihelion to aphelion, the

disturbing force is continually diminishing; and

while it moves from aphelion to perihelion, the

disturbing force is constantly increasing. Re-

ferring then to (47.) it will be seen, that in the

former of these times the moon's orbit is gra-

dually diminishing, and that in the latter it is

gradually enlarging. And though this altera-

tion is not great (the whole variation of dimen-

sions, from greatest to least, being less than

-g^Vg-), the effect on the angular motion (see

(49.) )
is very considerable

;
the angular velocity

becoming quicker in the former time and slower

in the latter; so that while the earth moves

from perihelion to aphelion, the moon's angular

motion is constantly becoming quicker, and while

the earth moves from aphelion to perihelion the

moon's angular motion is constantly becoming-
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slower. Now, if the moon's mean motion is

determined by comparing two places observed at

the interval of many years, the angular motion

so found is a mean between the greatest and

least. Therefore, when the earth is at perihe-

lion, the moon's angular motion is slower than

its mean motion
;
and when the earth is at

aphelion, the moon's angular motion is quicker

than its mean motion. Consequently, while the

earth is going from perihelion to aphelion, the

moon's true place is always behind its mean

place (as during the first half of that period the

moon's true place is dropping behind the mean

place, and during the latter half is gaining again

the quantity which it had dropped behind) ;

and while the earth is going from aphelion to

perihelion,
the moon's true place is always be-

fore its mean place. This inequality is called

the moon's annual equation ; it was discovered

by Tycho Brahe from observation, about A.D.

1590; and its greatest value is about 10', by

which the true place is sometimes before and

sometimes behind the mean place.

(91.) III. The disturbances which are periodical

in every revolution of the moon, and are inde-

pendent of excentricity, may thus be investi-
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gated. Suppose the sun to stand still for a few

revolutions of the moon (or rather suppose the

earth to be stationary,) and let us inquire in

what kind of orbit, symmetrical on opposite

sides, the sun can move. It cannot move in a

circle : for the force perpendicular to the radius

vector retards the moon as it goes from B
A
to

B , fig. 24, and its velocity is, therefore, less

at B 2
than at B

x , and on this account (sup-

B4

Fig. 24. s S.

2 B/
jBa

Ba

posing the force directed to A at B equal to

the force directed to A at B,,) the orbit would be

more curved at B
2
than at B

1
. But the force

directed to A at B is much greater than that

at Bj (see (88.) ) ;
and on this account the orbit

would be still more curved at B 2
than at B

1 ;

whereas, in a circle, the curvature is every where

the same. The orbit cannot, therefore, be cir-

cular. Neither can it be an oval with the earth

in its centre, and with its longer axis passing

through the sun, as fig. 25 ;
for the velocity

being small at B (in consequence of the dis-

turbing force perpendicular ta the radius vector
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having retarded
it,)

while the earth's attrac-

tion is great (in consequence of the nearness of

Fig. 25.

B B3

Ba

B ),
and increased by the disturbing force in

the radius vector directed towards the earth, the

curvature at B
2 ought to be much greater than

at Bj, where the velocity is great, the moon far

off, and the disturbing force directed from the

earth. But, on the contrary, the curvature at

B
2

is much less than at B
x ; therefore, this form

of orbit is not the true one. But if the orbit be

supposed to be oval, with its shorter axis

directed towards the sun, as in fig. 26, all the

conditions will be satisfied. For the velocity at

B
2

is diminished by the disturbing force having
B4

Fi
ff
.2G. f^\

2 Bit
*

JBs

B2

acted perpendicularly to the radius vector, while

the moon goes from B
1

to B
2 ; and though the

distance from A being greater, the earth's at-

traction at B
2

will be less than the attraction at

Bj ; yet, when increased by the disturbing

E5
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force, directed to A at B 2 , it will be very little less

than the attraction diminished by the disturb-

ing force at B
x

. The diminution of velocity then

at B being considerable, and the diminution of

force small, the curvature will be increased ;
and

this increase of curvature, by proper choice of

the proportions of the oval, may be precisely

such as corresponds to the real difference of cur-

vature in the different parts of the oval. Hence,

such an oval may be described by the moon

without alteration in successive revolutions.

(92.) We have here supposed the earth to be

stationary with respect to the sun. If, however,

we take the true case of the earth moving round

the sun, or the sun appearing to move round the

earth, we have only to suppose that the oval twists

round after the sun, and the same reasoning

applies. The curve described by the moon is then

such as is represented in fig. 27. As the disturb-

Fi. 27.

ing force, perpendicular to the radius vector, acts

in the same direction for a longer time than in the
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former case,, the difference in the velocity at syzygies

and at quadratures is greater than in the former

case, and this will require the oval to differ from

a circle, rather more than if the sun be supposed

to stand still.

(93.) If, now, in such an orbit as we have men-

tioned, the law of uniform description of areas by

the radius vector were followed, as it would be if

there were no force perpendicular to the radius

vector, the angular motion of the moon near B
tT

and B^fig. 26, would be much less than that near

B
x
and B . But in consequence of the disturbing

force, perpendicular to the radius vector, (which

retards the moon from B
L
to B

2 , and from B
3
to

B
4 , and accelerates it from B

2
to B

3 , and from

B
4

to B
1 ,) the angular motion is still less at B^

and B
4 , and still greater at B[ and B

3
. The

angular motion, therefore, diminishes considerably

while the moon moves from B
t

to B
2 , and in-

creases considerably while it moves from B to

B
3 , &c. The mean angular motion, determined

by observation, is less than the former and greater

than the latter. Consequently, the angular motion

at Bj is greater than the mean, and that at B 2 is

less than the mean; and, therefore, (as in (90.),)

from B
x
to B

2
the moon's true place is before the
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mean; from B
2

to B
3
the true place is behind the

mean; from B
3

to B
4
the true place is before the

mean; and from B
4
to B

t
the true place is be-

hind the mean. This inequality is called the

moon's variation ; it amounts to about 32', by
which the moon's true place is sometimes before

and sometimes behind the mean place. It was

discovered by Tycho, from observation, about A.D.

1590.

(94.) We have, however, mentioned, in (79.),

that the disturbing forces are not exactly equal on

the side of the orbit which is next the sun, and on

that which is farthest from the sun; the former

being rather greater. To take account of the

effects of this difference, let us suppose, that in the

investigation just finished, we use a mean value of

the disturbing force. Then we must, to represent

the real case, suppose the disturbing force near con-

junction to be increased, and that near opposition

to be diminished. Observing what the nature of

these forces is, (77.), (78.), and (84.), this amounts

to supposing that near conjunction the force ne-

cessary to make up the difference is a force acting

in the radius vector, and directed from the earth,

and a force perpendicular to the radius vector,

accelerating the moon before conjunction, and
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retarding her after it, and that near opposition the

forces are exactly of the contrary kind. Let us

then lay aside the consideration of all other dis-

turbing forces, and consider the inequality which

these forces alone will produce. As they are very

small., they will not in one revolution alter the orbit

sensibly from an elliptic form. What then must

be the excentricity, and what the position of the

line of apses that, with these disturbing forces

only, the same kind of orbit may always be de-

scribed ? A very little consideration of (57.),

(58.), and (68.), will show, that unless the line of

apses pass through the sun, the excentricity will

either be increasing or diminishing from the action

of these forces. We must assume, therefore, as our

orbit is to have the same excentricity at each revo-

lution, that the line of apses passes through the

sun. But is the perigee or the apogee to be

turned towards the sun ? To answer this question

we have only to observe, that the line of apses

must progress as fast as the sun appears to pro-

gress, and we must, therefore, choose that position

in which the forces will cause progression of the

line of apses. If the perigee be directed to the

sun, then the forces at both parts of the orbit will,

by (51.), (54.), (65.), and (66.), cause the line
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of apses to regress. This supposition,, then, can-

not be admitted. But if the apogee be directed to

the sun, the forces at both parts of the orbit will

cause it to progress; and by (56.), if a proper

value is given to the excentricity it will progress

exactly as fast as the sun appears to progress.

The effect., then, of the difference of forces, of

which we have spoken, is to elongate the orbit

towards the sun, and to compress it on the op-

posite side. This irregularity is called the paral-

lactic inequality.

We shall shortly show, that if the moon revolved

in such an elliptic orbit as we have mentioned,

the effect of the other disturbing forces (inde-

pendent of that discussed here) would be to make

its line of apses progress with a considerable velo-

city.
The force considered here, therefore, will

merely have to cause a progression which, added

to that just mentioned, will equal the sun's appa-

rent motion round the earth. The excentricity of

the ellipse, in which it could produce this smaller

motion, will (56.) be greater than that of the

ellipse in which the same force could produce the

whole motion. Thus the magnitude of the paral-

lactic inequality is considerably increased by the

indirect effect of the other disturbing forces.



MOON'S PARALLACTIC EQUATION. 87

(05.) The magnitude of the forces concerned here

is about yl-g-th of those concerned in (91.), &c. ;

but the effect is about ^th of their effect. This

is a striking instance of the difference of propor-

tions in forces,, and the effects that they produce,

depending on the difference in their modes of

action. The inequality here discussed is a very

interesting one, from the circumstance that it

enables us to determine with considerable accu-

racy the proportion of the sun's distance to the

moon's distance, which none of the others will do,

as it is found upon calculation, that their magni-

tude depends upon nothing but the excentricities

and the proportion of the periodic times, all which

are known without knowing the proportion of

distances.

(96.) The effect of this, it will be readily un-

derstood, is to be combined with that already

found. See the note to (134.) The moon's orbit,

therefore, is more flattened on the side farthest

from the sun, and less flattened on the side next

the sun, than we found in (91.) and (92.) The

equable description of areas is scarcely affected by
these forces. The moon's variation, therefore, is

somewhat diminished near conjunction, and is

somewhat increased near opposition.
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(97.) It will easily be imagined, that if there is

an excentricity in the moon's orbit, the effect of

the variation upon that orbit will be almost ex-

actly the same as if there were no excentricity*.

* As this general proportion is of considerable importance, we

shall point out the nature of the reasoning by which (with proper

alteration for different cases,) the reader may satisfy himself of its

correctness. The reason why, infg. 29, the moon cannot de-

scribe the circle B
1? b

2 , B 3 , 64, though it touches at Bj and

B3 , and the reason that it will describe the oval B,, B 2 , B 3 ,
B

4 , is,

Fig. 29.

Pz

that the disturbing force makes the forces at B
x
and B 3 less than

they would otherwise have been, and greater at B
2 and B 4 than

they would otherwise have been ; and the velocity is, by that part

of the force perpendicular to the radius vector, made less atB
2 ,

than it would otherwise have been. So that, unless we supposed it

moving at B
x
with a greater velocity than it would have had, un-

disturbed, in the circle B
x , b

2 ,
B

3 , 54, the great curvature pro-

duced by the great force, and diminished velocity at B
2 , would

have brought it much nearer to A than the point B
3 ; but

with this large velocity at B lt
it will go out farther at B

2 , and

then the great curvature may make it pass exactly through
B 3 . In like manner, in Jig. 30, if the velocity at B

x were not

B4

Fig. 30.

B2

greater than it would have had, undisturbed, in the ellipse

B x ,
6 2 , B 3 ,

64 , the increased curvature at B 2 , produced by the
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Thus,, supposing that the orbit without the dis-

turbing force had such a form as the dark line in

fig. 28, it will, with the disturbing force, have such

Fig. 28.

a form as the dotted line in that figure. The same

must be understood in many other cases of dif-

ferent inequalities which affect the motion of the

same body.

(98.) IV. We now proceed with the disturb-

ances dependent on the excentricity : and, first,

with the motion of the moon's perigee. In the

first place, suppose that the perigee is on the same

side as the sun. While the moon is near Bu

fig. 31, that is near perigee, the disturbing force

increased force and diminished velocity there, would have brought
it much near to A than the point B 3 ; but with a large velocity at

B! it will go out at B further than it would otherwise have gone

out, and then the increased force and diminished velocity will

curve its course so much, that it may touch the elliptic orbit at

B 3 ; and so on. The whole explanation, in one case as much as

in the other, depends entirely upon the difference of the forces in

the actual case, from the forces, if the moon were not disturbed.
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is directed from A; and, consequently, by (51.),

the line of apses regresses. While the moon is

Fig. 3}. B4~

B2

near B
3 , that is near apogee, the disturbing

force is also directed from A, and, consequently,

by (54.), the line of apses progresses. The

question, then, now is, which is the greater, the

regress, when the moon is near B
t
, or the pro-

gress, when it is near B
3

? To answer this, we

will remark, that if the disturbing force directed

from A, were inversely proportional to the

square of the distance (and, consequently, less

at B
3
than at B

t ,)
it would amount to exactly

the same as if the attraction of A were altered

in a given proportion* ; and in that case B would

* The reasoning in the text may he more fully stated thus : If

with the original attractive force of the earth there be combined

another force, directed from the earth, and always bearing the

same proportion to the earth's original attraction, this combined

force may be considered in two ways : 1st, As a smaller attraction,

always proportional to the original attraction, or inversely propor-

tional to the square of the distance. 2d, As the original attrac-

tion, with a force superadded, which may be treated as a disturb-

ing force. The result of the first mode of consideration will be,

that the moon will describe an ellipse, whose line of apses does

not move. The result of the second mode of consideration will be,
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describe round A an ellipse, whose line of apses

was invariable ;
or the progression produced at

B
3
would be equal to the regression produced

at Bj. But, in fact, the disturbing force at B
3

is to that at B
x

in the same proportion as

AB
3

to ABj, by (82.), and, therefore, the

disturbing force at B
3

is greater than that at

B
l ; and, consequently, much greater than that

which would produce a progression equal to the

regression produced at B
1 ; and, therefore, tho

effects of the disturbing force at B
3 predomi-

nate, and the line of apses progresses. The

that the instantaneous ellipse (in which the moon would proceed to

move, if the additional force should cease) will have its line of

apses regressing, while the moon is near perigee, and progressing

wh-ile she is near apogee. There is, however, no incongruity be-

tween the immobility of the line of apses in the first mode of

consideration, and the progress or regress in the second; because

the line of apses of the instantaneous ellipse in the second case,

is an imaginary line, determined by supposing the disturbing

force to cease, and the moon to move undisturbed. At the apses,

however, the line of apses must be the same in both methods of

consideration; since, whether the disturbing force cease or not,

the perpendicularity of the direction of the motion to the radius

vector determines the place of an apse. Consequently, while the

moon moves from one apse to the other, the motions of the line of

apses in the second mode of consideration, must be such as to pro-

duce the same effect on the position of the line of apses as in the

first mode of consideration
;

that is, they must not have altered its

place ;
and hence the progression at one time must be exactly

ecwal to the regression at the other time,
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disturbing force directed to A in the neighbour-

hood of B
2
and B

4 scarcely produces any effect,

as on one side of each of those points the effect is

of one kind, and on the other side it is of the op-

posite kind, (55.)

(99.) The disturbing force directed from A,

though the only one at B! and B3, is not, however, the

only one in the neighbourhood of B
t
and B 3 . While

the moon is approaching to B
l?

the force perpen-

dicular to the radius vector accelerates the moon,

and therefore, by (65.), as B t
is the place ofperigee,

the line of apses regresses ;
when the moon has

passed B!, the force retards the moon, and, there-

fore, by (66.), the line of apses still regresses. But

when the moon is approaching B3 the force perpen-

dicular to the radius vector accelerates the moon,

and therefore, by (65.) and (66.) as B3 is the

place of apogee, the line of apses progresses : when

the moon has passed B3 the force retards the moon

and the line of apses still progresses. The ques-

tion now is, whether the progression produced by

the force perpendicular to the radius vector near

Ba, will or will not exceed the regression produced

near B x ? To answer this we must observe, that

the rate of this progress or regress depends
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entirely upon the proportion
* which the velocity

produced by the disturbing force bears to the velo-

city of the moon
;
and since from B 2 to B b and from

*
Suppose, for facility of conception, that the force perpendicular

to the radius vector, acts in only one place in each quadrant be-

tween syzygies and quadratures. The portions of the orbit which

are bisected by the line of syzygies will be described with greater

velocity in consequence of this disturbance (abstracting all other

causes) than the other portions. Now the curvature of any part of

an orbit does not depend on the central force simply, or on the

velocity, but on the relation between them ; so that the same curve

may be described either by leaving the central force unaltered and

increasing the velocity in a given proportion, or by diminishing

the central force in a corresponding proportion, and leaving the

velocity unaltered. Consequently, in the case before us. the same

curve will be described as if, without alteration of velocity, the cen-

tral force were diminished, while the moon passed through the

portions bisected by the line of syzygies. If now the imaginary di-

minution of central force were in the same proportion (that is, if the

real increase of velocity were in the same proportion) at both syzy-

gies, which here coincide with the apses, the regression of the line

of apses produced at perigee, would be equal to the progression pro-

duced at apogee. But the increase of velocity produced by the force

perpendicular to the radius vector near apogee, is much greater

than that near perigee. First, because the force is greater, in pro-

portion to the distance. Second, because the time of describing a

given small angle is greater in proportion to the square of the dis-

tance
;
so that the acceleration produced while the moon passes

through a given angle, is proportional to the cube of the distance.

Third, because the velocity, which is increased by this acceleration,

is inversely proportional to the distance
;

so that the ratio in which

the velocity is increased is proportional to the fourth power of the

distance. The effect at the greater distance, therefore, predomi-
nates over that at the smaller distance

;
and therefore, on the whole,

the force perpendicular to the radius vector produces an effect similar

to its apogeal effect
;
that is, it causes the line of apses to progress.
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B3 to B4
the disturbing force is greater than that

from B4 to Bu and from Bj to B 2, and acts for a

longer time (as by the law of equable description

of areas, the moon is longer moving from B2 to B3

and B 4 , than from B4 to B! and B2), and since the

moon's velocity in passing through B 2, B 3, B4 , is

less than her velocity in passing through B4, Bu

B2, it follows that the effect in passing through

B 2 ,
B 3, B4 , is much greater than that in passing

through B4, B!, arid B 2 . Consequently, the effect

of this force also is to make the line of apses pro-

gress.

(100.) On the whole, therefore, when the peri-

gee is turned towards the sun, the line of apses

progresses rapidly. And the same reasoning ap-

plies in every respect when the perigee is turned

from the sun.

(101.) In the second place, suppose that the

line of apses is perpendicular to the line joining

the earth and sun. The disturbing force at both

apses is now directed to the earth, and conse-

quently, by (50.) and (53.), while the moon is near

perigee, the disturbing force causes the line of

apses to progress, and while the moon is near

apogee the disturbing force causes the line of apses

to regress. Here, as in the last article, the effects
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at perigee and at apogee would balance if the dis-

turbing force were inversely proportional to the

square of the distance from the earth. But the

disturbing force is really proportional to the dis-

tance from the earth : and,, therefore, as in the last

article, the effect of the disturbing force while the

moon is at apogee preponderates over the other ;

and therefore, the force directed to the centre

causes the line of apses to regress.

(102.) We must also consider the force perpen-

dicular to the radius vector. In this instance, that

force retards the moon while she is approaching to

each apse, and accelerates her as she recedes from

it. The effect is, that when the moon is near peri-

gee the force causes the line of apses to progress,

and when near apogee it causes the line of apses

to regress (65.) and (66.) The latter is found to

preponderate, by the same reasoning as that in

(99.) From the effect, then, of both causes the

line of apses regresses rapidly in this position of

the line of apses.

(103.) It is important to observe here, that the

motion of the line of apses would not, as in (56.),

be greater if the excentricity of the orbit were

smaller. For though the motion of the line of

apses is greater in proportion to the force which
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causes it when the excentricity is smaller; yet, in

the present instance, the force which causes it is

itself proportional to the excentricity (inasmuch

as it is the difference of the forces at perigee and

apogee, which would be equal if there were no

excentricity) : so that if the excentricity were made

less, the force which causes the motion of the line

of apses would also be made less, and the motion of

the line of apses would be nearly the same as before.

(104.) It appears then, that when the line of

apses passes through the sun, the disturbing force

causes that line to progress ;
when the earth has

moved round the sun, or the sun has appeared to

move round the earth, so far that the line of apses

is perpendicular to the line joining the sun and the

earth, the line of apses regresses from the effect of

the disturbing force; and at some intermediate

position, it may easily be imagined that the force

produces no effect on it. It becomes now a matter

of great interest to inquire, whether upon the whole

the progression exceeds the regression. Now the

force perpendicular to the radius vector, considered

in (99.), is almost, exactly equal to that considered

in (102.); so that the progression produced by that

force when the line of apses passes through the

sun, is almost exactly equal to the regression which
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it produces when the line of apses is perpendicular

to the line joining the earth and sun ; and this

force may, therefore, be considered as producing

no effect (except indirectly, as will be hereafter

mentioned.) But the force in the direction of the

radius vector, tending from the earth in (98.), is,

as we have mentioned in (80.), almost exactly

double of that tending to the earth in (101.), and,

therefore, its effect predominates : and, therefore,

on the whole, the line of apses progresses. In fact,

the progress, when the line of apses passes through

the sun, is about 11 in each revolution of the

moon; the regress, when the line of apses is per-

pendicular to the line joining the earth and sun, is

about 9 in each revolution of the moon.

(105.) The progression of the line of apses of

the moon is considerably greater than the first

consideration would lead us to think, for the fol-

lowing reasons.

(106.) Firstly. The earth is revolving round the

sun, or the sun appears to move round the

earth, in the same direction in which the moon

is going. This lengthens the time for which

the sun acts in any one manner upon the moon,

F
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but it lengthens it more for the time in which

the moon is moving slowly, than for that in

which it is moving quickly. Thus
; suppose that

the moon's angular motion when she is near

perigee is fourteen times the sun's angular mo-

tion : and when near apogee, only ten times

the sun's motion. Then she passes the sun at

the former time, (as seen from the earth,) with

Ifths of her whole motion, but at the latter

with only TVths ; consequently, when near peri-

gee, the time in which the moon passes through

a given angle from the moving line of syzygies,

(or the time in which the angle between the

sun and moon increases by a given quantity,) is

-rHhs of the time in which it would have passed

through the same angle, had the sun been sta-

tionary ;
when near apogee, the number express-

ing the proportion is Vths. The latter number

is greater than the former
; and, therefore, the

effect of the forces acting near apogee is in-

creased in a greater proportion than that of the

forces acting near perigee. And as the effective

motion of the line of apses is produced by the

excess of the apogeal effect above the perigeal

effect, a very small addition to the former will
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bear a considerable proportion to the effective

motion previously found; and thus the effective

motion will be sensibly increased.

(107.) Secondly. When the line of apses is di-

rected toward the sun, the whole effect of the

force is to make it progress^ that is, to move in

the same direction as the sun : the sun passes

through about 27 in one revolution of the moon,

and, therefore, departs only 16 from the line of

apses ;
and therefore the apse continues a long

time near the sun. When at right angles to the

line joining the earth and sun, the whole effect

of the force is to make it regress, and therefore,

moving in the direction opposite to the sun's

motion, the angle between the sun and the line

of apses is increased by 36 in each revolution,

and the line of apses soon escapes from this

position. The effect of the former force is there-

fore increased, while that of the latter is dimi-

nished : and the preponderance of the former

is much increased. It is in increasing the ra-

pidity of progress at one time, and the rapidity

of regress at another, that the force perpendi-

cular to the radius vector indirectly increases

the effect of the former in the manner just de-

scribed.

F 2
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(108.) From the combined effect of these two

causes the actual progression of the line of apses is

nearly doubled.

(109.) The line of apses upon the whole, there-

fore, progresses ;
and (as calculation and observa-

tion agree in showing) with an angular velocity

that makes it (on the average) describe 3 in

each revolution of the moon, and that carries it

completely round in nearly nine years. But as it

sometimes progresses and sometimes regresses for

several months together, its motion is extremely

irregular. The general motion of the line of apses

has been known from the earliest ages of astro-

nomy.

(110.) V. For the alteration of the excentricity of

the moon's orbit : first, let us consider the orbit

in the position in which the line of apses

passes through the sun, fig. 31. While the

moon moves from B
l (the perigee,) to B 3, (the

apogee,) the force in the direction of the radius

vector is sometimes directed to the earth, and

sometimes from the earth, and therefore, by

(57.) and (59.), it sometimes diminishes the

excentricity and sometimes increases it. But

while the moon moves from B3 to Bj, there are



VARIATION OF MOON'S EXCENTRICITY. 101

exactly equal forces acting in the same manner

at corresponding parts of the half-orbit, and

these, by (58.), will produce effects exactly

opposite. On the whole, therefore, the disturb-

ing force in the direction of the radius vector

produces no effect on the excentricity. The

force perpendicular to the radius vector increases

the moon's velocity when moving from B4 to B lf

and diminishes it when moving from E l to B 2 ;

in moving, therefore, from B 4 to B w the excen-

tricity is increased (65.), and in moving from

B v to B 2, it is as much diminished (66.). Simi-

larly in moving from Ba to B3 , the excentricity

is diminished, arid in moving from B3 to B 4, it is

as much increased. This force, therefore, pro-

duces no effect on the excentricity.

On the whole, therefore, while the line of

apses passes through the sun, the disturbing

forces produce no effect on the excentricity of

the moon's orbit.

(111.) When the line of apses is perpendicular

to the line joining the earth and sun, the same

thing is true. Though the forces near perigee and

near apogee are not now the same as in the last

case, their effects on different sides of perihelion
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and aphelion balance each other in the same

way.

(1 12.) But if the line of apses is inclined to the

line joining the earth and sun,, as in fig. 32., the

Fig. 32.

effects of the forces do not balance. While the

moon is near B4 and near B2 , the disturbing force

in the radius vector is directed to the earth
;

at B4

therefore, (58.), as the moon is moving towards

perigee, the excentricity is increased ;
and at B2 ,

as the moon is moving from perigee, the excen-

tricity is diminished. From the slowness of the

motion at B 2, (which gives the disturbing force

more time to produce its effects,) and the great-

ness of the force, the effect at B2 will preponder-

ate, and the combined effects at B2 and B
4
will di-

minish the excentricity. This will appear from

reasoning of the same kind as that in (98.). At

B
x
and B 3 , the force in the radius vector is directed

from the earth: at "B
lt therefore, by (59.), as the

moon is moving from perigee, the excentricity is

increased, and at B3 it is diminished: but from
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the slowness of the motion at B8 and the mag-

nitude of the force, the effect at B3 will prepon-

derate, and the combined effects at BI and B3 will

diminish the excentricity. On the whole, there-

fore, the force in the direction of the radius vector

diminishes the excentricity. The force perpen-

dicular to the radius vector retards the moon from

B! to B2 , but the first part of this motion may be

considered near perigee, and the second near apo-

gee, and, therefore, in the first part, it diminishes

the excentricity, and in the second increases it
;

and the whole effect from B
t
to B2 is very small.

Similarly the whole effect from B 3 to B 4 is very

small. But from B4
to B^ the force accelerates the

moon, and therefore, by (68.), (the moon being

near perigee) increases the excentricity; and from

B 2 to B3 , the force also accelerates the moon, arid

by (68.) (the moon being near apogee) diminishes

the excentricity ;
and the effect is much *

greater

* To the reader who- is acquainted with Newton's 3rd section,

the following demonstration of this point will be sufficient. Four

times the reciprocal of the latus rectum is equal to the sum of the

reciprocals of the apogeal and perigeal distances. The effect of

an increase of velocity at perigee in a given proportion is to alter

.the area described in a given time in the same proportion, and

therefore, to alter the latus rectum in a corresponding proportion.

Consequently an increase of velocity at perigee in a given propor-

tion alters the reciprocal of the apogeal distance by a given quan-

tity, and, therefore, alters the apogeal distance by a quantity nearly
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(from the slowness of the moon and the greatness

of the force) between B 2 and B3 than between B 4

and BI, and therefore the combined effect of the

forces in these two quadrants is to diminish the

excentricity.

On the whole, therefore, when the line of apses

is inclined to the line joining the earth and sun,

in such a manner that the moon passes the line of

apses before passing the line joining the earth and

proportional to the square of the apogeal distance ; and, therefore,

the ratio of the alteration of apogeal distance to apogeal distance

(on which the alteration of excentricity depends) is nearly propor-
tional to the apogeal distance. Similarly, if the velocity at apogee
is increased in a given proportion, the ratio of the alteration of peri-

geal distance to perigeal distance (on which the alteration of excen-

tricity depends) is nearly proportional to the perigeal distance.

Thus if the velocity were increased in the same proportion at peri-

gee and at apogee, the increase of excentricity at the former would

be greater than the diminution at the latter, in the proportion of

apogeal distance to perigeal distance. But in the case before us, the

proportion of increase of velocity is much greater at apogee than

at perigee. First, because the force is greater, (being in the same

proportion as the distance.) Second, because the time in which the

moon describes a given angle is greater, (being in the same pro-

portion as the square of the distance,) so that the increase of

velocity is in the proportion of the cube of the distance. Third, be-

cause the actual velocity is less, (being inversely as the distance,)

so that the ratio of the increase to the actual velocity is propor-

tional to the fourth power of the distance. Combining this propor-

tion with that above, the alterations of excentricity in the case be-

fore us, produced by the forces acting at apogee and at perigee, are

in the proportion of the cubes of the apogeal and perigeal distances

respectively.
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sun, the excentricity is diminished at every revo-

lution of the moon.

(113.) In the same manner it will appear that

if the line of apses is so inclined that the moon

passes the line of apses after passing the line join-

ing the earth and sun, the excentricity is increased

at every revolution of the moon. Here the force in

the radius vector is directed to the earth, as the

moon moves from perigee and from apogee : and is

directed from the earth as the moon moves to peri-

gee and to apogee ;
which directions are just oppo-

site to those in the case already considered. Also

the force perpendicular to the radius vector retards

the moon both near perigee and near apogee ;
and

this is opposite to the direction in the case already

considered. On the whole, therefore, the excen-

tricity is increased at every revolution of the moon.

(114.) In every one of these cases the effect is

exactly the same if the sun be supposed on the

side of the moon's orbit, opposite to that repre-

sented in the figure.

F5
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(115.) Now the earth moves round the sun,

and the sun therefore appears to move round the

earth in the order successively represented by the

figs. 31, 32, and 33. Hence then; when the sun

is in the line of the moon's apses, the excentricity

does not alter (110.) ;
after this it diminishes till

the sun is seen at right angles to the line of apses

(112.); then it does not alter (111.) : and after

this it increases .till the sun reaches the line of

apses on the other side. Consequently, the excen-

tricity is greatest when the line of apses passes

through the sun
;
and is least when the line of

apses is perpendicular to the line joining the earth

and sun.

The amount of this alteration in the excentricity

of the moon's orbit is more than ^-th of the mean

value of the excentricity; the excentricity being

sometimes increased by this part, and sometimes

as much diminished; so that the greatest and

least excentricities are nearly in the proportion of

6 : 4 or 3 : 2.

(116.) The principal inequalities in the moon's

motion may therefore be stated thus :

1st. The elliptic inequality, or equation of the centre

(31.), which would exist if it were not -disturbed...
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2nd. The annual equation (90.), depending on

the position of the earth in the earth's orbit.

3rd. The variation (93.), and parallactic inequality

(94.), depending on the position of the moon

with respect to the sun.

4th. The general progression of the moons perigee

(104.)

5th. The irregularity in the motion of the perigee,

depending on the position of the perigee with

respect to the sun (109.)

6th. The alternate increase and diminution of the

eccentricity, depending on the position of the

perigee with respect to the sun (115.)

These inequalities were first explained (some im-

perfectly) by Newton, about A. D. 1680.

(117.) The effects of the two last are combined

into one called the evection. This is by far the

largest of the inequalities affecting the moon's

place : the moon's longitude is sometimes increased

1 15' and sometimes diminished as much by this

inequality. It was discovered by Ptolemy, from

observation, about A. D. 140.

(118.) It will easily be imagined that we have

here taken only the principal inequalities. There

are many others, arising chiefly from small errors
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in the suppositions that we have made. Some of

these, it may easily be seen, will arise from varia-

tions of force which we have already explained.

Thus the difference of disturbing forces at conjunc-

tion and at opposition, whose principal effect was

discussed in (94.), will also produce a sensible

inequality in the rate of progression of the line of

apses, and in the dimensions of the moon's orbit.

The alteration of disturbing force depending on

the excentricity of the earth's orbit will cause an

alteration in the magnitude of the variation and

the ejection. The alteration of that part mentioned

in (94.) produces a sensible effect depending on

the angle made by the moon's radius vector with

the earth's line of apses. All these, however, are

very small : yet not so small but that, for astrono-

mical purposes, it is necessary to take account of

thirty or forty.

(119.) There is, however, one inequality of

great historical interest, affecting the moon's mo-

tion, of which we may be able to give the reader a

general idea. We have stated in (89.) that the

effect of the disturbing force is, upon the whole, to

diminish the moon's gravity to the earth : and in

(90.) we have mentioned that this effect is greater

when the earth is near perihelion, than when the
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earth is near aphelion. It is found, upon accurate

investigation, that half the sum of the effects at

perihelion and at aphelion is greater than the

effect at mean distance, by a small quantity de-

pending on the excentricity of the earth's orbit:

and, consequently, the greater the excentricity

(the mean distance being unaltered) the greater

is the effect of the sun's disturbing force. Now,

in the lapse of ages, the earth's mean distance is

not sensibly altered by the disturbances which the

planets produce in its motion ;
but the excentricity

of the earth's orbit is sensibly diminished, and has

been diminishing for thousands of years. Conse-

quently the effect of the sun in disturbing the moon

has been gradually diminishing, and the gravity

to the earth has therefore, on the whole, been gra-

dually increasing. The size of the moon's orbit

has therefore, gradually, (but insensibly,) dimi-

nished (47.) : but the moon's place in its orbit

has sensibly altered (49 ),-and the moon's angular
motion has appeared to be perpetually quickened.

This phenomenon was known to astronomers by
the name of the acceleration of the moon's mean

motion, before it was theoretically explained in

1787, by Laplace: on taking it into account, the

oldest and the newest observations are equally well
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represented by theory. The rate of progress of the

moon's line of apses has, from the same cause, been

somewhat diminished.

SECTION VI. Theory of Jupiter's Satellites.

(120.) JUPITER has four satellites revolving round

him in the same manner in which the moon re-

volves round the earth; and it might seem,, there-

fore, that the theory of the irregularities in the

motion of these satellites is similar to the theory

of the irregularities in the moon's motion. But

the fact is, that they are entirely different. The

fourth satellite (or that revolving in the largest

orbit) has a small irregularity analogous to the

moon's variation, a small one similar to the evec-

tion, and one similar to the annual equation : but

the last of these amounts only to about two mi-

nutes, and the other two are very much less. The

corresponding inequalities in the motion of the

other satellites are still smaller. But these satel-

lites disturb each other's motions, to an amount

and in a manner of which there is no other ex-

ample in the solar system; and (as we shall after-

wards mention) their motions are affected in a

most remarkable degree by the shape of Jupiter.
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(121.) The theory, however, of these satellites is

much simplified by the following circumstances :

First, that the disturbances produced by the sun

may, except for the most accurate computations,

be wholly neglected. Secondly, that the orbits

of the two inner satellites have no excentricity in-

dependent of perturbation. Thirdly, that a very

remarkable relation exists (and, as we shall show,

necessarily exists) between the motions of the three

first satellites.

Before proceeding with the theory of the first

three satellites, we shall consider a general pro-

position which applies to each of them.

(122.) Suppose that two small satellites re-

volve round the same planet ; and that the periodic

time of the second is a very little greater than

double the periodic time of the first ; what is the,

form of the orbit in which each can revolve, de-

scribing a curve of the same form at every revo-

lution ?

(123.) The orbits will be sensibly elliptical, as

the perturbation produced by a small satellite in

one revolution will not sensibly alter the form of

the orbit. The same form being supposed to be

described each time, the major axis and the ex-

centricity are supposed invariable, and the posi-
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tion of the line of apses only is assumed to be

variable. The question then becomes, What is

the excentricity of each orbit, and what the varia-

tion of the position of the line of apses, in order

that a curve of the same kind may be described at

every revolution ?

(124.) In fig. 34. let B
3 , B,, B

2 , represent (he

orbit of the first, and C
3 , C 19

C
2 , the orbit of the

second. Suppose that when B was at B
x , C

Fig. 34.

was at C , so that A, B 19
C

x , were in the same

straight line, or that B and C were in conjunction

at these points. If the periodic time of C were

exactly double of the periodic time of B, B would

have made exactly two revolutions, while C made

exactly one
; and, therefore, B and C would again

be in conjunction at B and C
x

. But as the

periodic time of C is a little longer than double

that of B, or the angular motion of C rather

slower than is supposed, B will have come up to

it (in respect of longitude as seen from A) at some

line B
2
C

2 , which it reaches before reaching the
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former line of conjunction B 1
C

1
. And it is plain

that there has been no other conjunction since that

with which we started, as the successive conjunc-

tions can take place only when one satellite has

gained a whole revolution on the other. The first

conjunction then being in the line A B
x
C

t , the

next will be in the line A B
2
C

3 ,
the next in a

line A B
3
C

3 , still farther from the first, &c. ; so

that the line of conjunction will regress slowly ;

and the more nearly the periodic time of one satel-

lite is double that of the other, the more slowly

will the line of conjunction regress.

(125.) As the principal part of the perturba-

tion is produced when the satellites are near con-

junction, (in consequence of the smallness of their

distance at that time,) it is sufficiently clear that

the position of the line of apses, as influenced by

the perturbation, must depend on the position of

the line of conjunction ; and, therefore, that the

motion of the line of apses must be the same as

the motion of the line of conjunction. Our ques-

tion now becomes this : What must be the excen-

tricities of the orbits, and what the positions of the

perijoves, in order that the motions of the lines of

apses, produced by the perturbation, may be the

same as the motion of the line of conjunction ?
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(126.) If the line of apses of the first satellite

does not coincide with the line of conjunction, the

first satellite at the time of conjunction will either

be moving from perijove towards apojove, or from

apojove towards perijove. If the former,, the dis-

turbing force,, which is directed from the central

body, will, by (59.), cause the excentricity to

increase ; if the latter, it will cause it to decrease.

As we have started with the supposition, that the

excentricity is to be supposed invariable, neither

of these consequences can be allowed, and, there-

fore, the line of apses must coincide with the line of

conjunction.

, (127.) If the apojove of the first satellite were

in the direction of the points of conjunction, the

disturbing force in the direction of the radius

vector, being directed from the central body,

would, by (54.), cause the line of apses to pro-

gress. Also the force perpendicular to the radius

vector, before the first satellite has reached con-

junction, (and when the second satellite, which

moves more slowly, is nearer to the point of con-

junction than the
first,)

tends to accelerate the

first satellite
;
and that which acts after the satel-

lites have passed conjunction, tends to retard the

first satellite; and both these, by (65.) and (66.),
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cause the line of apses to progress. But we have

assumed, that the line of apses shall move in the

same direction as the line of conjunction,, that is,

shall regress ; therefore, the apojove of the first

satellite cannot be in the direction of the points of

conjunction.

(128.) But if we suppose the perijove of the

first satellite to be in the direction of the points of

conjunction, every thing becomes consistent. The

disturbing force, in the direction <?f the radius vec-

tor, from the central body, will, by (51.), cause

the line of apses to regress, The force perpendi-

cular to the radius vector, which accelerates the

first satellite before it has reached conjunction,

that is, before it has reached the perijove, and re-

tards it after that time, ,
will also, by (65.) and

(66.), cause the line of apses to regress. Also,

as in (56.), this regression will be greater as the

excentricity of the orbit is less, because the dis-

turbing force, which acts here, does not depend

on the excentricity. By proper choice, therefore,

of a value of the excentricity, we can make an

orbit, whose line of apses will always regress ex-

actly as fast as the line of conjunction, and will,

therefore, always coincide with it
;
whose excentri-

city, in consequence, will never alter, by (59.) and
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(68.) ;
and whose general shape, therefore, will be

the same at every successive revolution.

(129.) We shall mention hereafter, that the

form of Jupiter is such as would cause the perijove

of the first satellite, if it were not disturbed by the

second satellite, to progress with a
velocity not

depending upon the excentricity of the orbit. The

only alteration which this makes in our conclu-

sions is, that the excentricity of the orbit must be

so chosen, that the perturbation of which we have

spoken will cause a regression equal to the sum of

the progression which Jupiter's shape would occa-

sion, and the regression of the line of conjunction.

As this is greater than the regression of the line of

conjunction alone, the excentricity of the orbit

must be less. So that the only effect of Jupiter's

shape is to diminish, in some degree, the excen-

tricity of the orbit.

(130.) Now let us inquire what must be the

form and position of the orbit of the second satel-

lite. As before, the principal part of the pertur-

bation is near conjunction. At and near the con-

junction, the disturbing force, in the direction of

the radius vector, is directed to the central body.

Before conjunction, when the first satellite is less

advanced than the second, the disturbing force,
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perpendicular to the radius vector, retards the

second, by (86.). For, the periodic time of the

second being nearly double that of the first, the

mean distances from the planet will be nearly in

the proportion of 7 to 11, (as the proportion of the

cube of 7 to the cube of 1 1 is nearly the same as

the proportion of the square of 1 to the square of

2, see (34.), ) and, therefore, near conjunction,

the distance of the first from the second is less

than the distance of the first from the central

body. After conjunction, the disturbing force

accelerates the second body. Now, without going

through several cases as before, which the reader

will find no trouble in doing for himself, we shall

remark, at once, that if the apojove of the second

satellite is in the direction of the points of conjunc-

tion, both the disturbing force, directed to the

central body at apojove, and that perpendicular to

the radius vector, retarding it before it reaches

apojove, and accelerating it afterwards, by (53.),

(65.), and (66.), will cause the line of apses to

regress ;
and that, by proper choice of excentricity,

the regression of the line of apses may be made

exactly equal to the regression of the line of con-

junction.

(131.) Our conclusion., therefore, is : If two satel-
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lites revolve round a primary, and if the periodic

time of one is very little greater than double the

periodic time of the other, and if we assume that

the orbits described have always the same form ;

(that is, if they have no excentricity independent

of perturbation;) then the orbits will not sensibly

differ from ellipses, the lines of apses of both orbits

must always coincide with the line of conjunctions,

and the perijove of the first orbit, and the apojove

of the second, must always be turned towards the

points of conjunction. It appears also, that these

conditions are sufficient, inasmuch as the rate of

regress of the lines of apses will (with proper

values for the excentricities) be the same as the

rate of regress of the line of conjunctions, and the

excentricities then will not change. The excen-

tricities of the orbits will be greater as the regress

of the line of conjunctions is slower, or as the pro-

portion of the periodic times approaches more ex-

actly to the proportion of 1 : 2.

(132.) In the same manner it would be found,

that if the periodic time of one satellite were very

little less than double that of the other, the lines

of apses (in order that similar orbits may be

traced out at .each revolution) must always coin-

cide with the line of conjunction, and the apojove
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of the first satellite and the perijove of the second

must always be turned towards the points of con-

junction ;
and the excentricities of the orbits must

be greater, as the proportion of the periodic times

approaches more exactly to the proportion of 1 : 2.

(133.) The same thing exactly would hold, if

the periodic times were very nearly in the ratio of

2:3, or of 3:4, &c., but these suppositions do

not apply to Jupiter's satellites.

(134.) Having thus found the distortion pro-

duced by the disturbing force in orbits which

have no excentricity, independent of perturbation,

it will easily be imagined, that the same kind of

distortion will be produced if the orbits have an

original excentricity. If we make, in an elliptic

orbit, the same kind of alteration which must be

made in a circular orbit, in order to form the

figure found above, we shall have nearly the orbit

that will be described from the combined effects of

perturbation and of excentricity independent of

perturbation *.

* The truth of this proposition may be shown more fully in the

following manner: Let A, fig. 33, be the place of the primary,

AC the line of conjunctions of the first and second satellite,

B D E the elliptic orbit, in which the first satellite would move if

undisturbed, D its perijove. Suppose (to simplify the figure) that

the attraction of the second satellite acts only for a limited space j
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We shall now proceed with the application of

these conclusions to Jupiter's first three satellites.

for instance, while the first satellite passes from F to H. Then
the result of the ^investigations from (122.) to (131.) is, that the

c

Fig. 35.

first satellite will be drawn outwards from the orbit in which it

would have moved, so as to describe a curve F G H
;
and when

the disturbing force ceases at H, it will proceed to describe an

ellipse, H e b d, similar to B D E, but with this difference, that

the perijove is at d instead of D. The conclusion, however,

now that it has been securely obtained from the reasoning above,

may be stated as the result of the following reasoning : In con-

sequence of the disturbing force, which has drawn the first

satellite outwards, without, upon the whole, altering its velocity,

(accelerating it before conjunction, and retarding it afterwards,)

the satellite has moved in a curve, F G H, external to the ellipse

F D, in which it would have moved
;
and after the disturbing

force has ceased at H, the satellite (which is moving in a path

inclined externally from the old orbit) continues to recede from the

old orbit till the diminution of velocity (26V) allows its path to be

so much curved, that at e it begins to approach, and at L the new

orbit intersects the old one ; and after this, the path is inclined

internally from the old orbit, till the increase of velocity (25.)

makes its path so little curved that it approaches the old orbit

again, and again crosses it between d and D. In like manner, if,

as \nfig. 36., the orbit B FE have an excentricity independent of

perturbation, (the perijove being at any point D',) nevertheless,

we may state that, in consequence of the disturbing force, the
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(135.) The periodic time of Jupiter's first satel-

lite is, 1 day, 18 hours, 27 minutes, and 34

satellite will move in a curve F G H external to F E ; but when

the disturbing force ceases at H, the satellite (which is moving in.

Fig. 36.

a path inclined externally from the 'old orbit) continues to recede

from the old orbit till the diminution of velocity (26.) allows its

path to be so much curved, that it begins to approach at some

point e; that at some point L, nearly opposite to C, the new orbit

intersects the old one ; and that, after this, the path is inclined

internally from the old orbit, till the increase of velocity (25.)

makes its path so little curved that it approaches the old orbit

again, and again crosses it between F and H. Thus, the alteration

of the radius vector, drawn in any given direction, as A K (which
in the new orbit is altered to A &) is nearly the same in the second

case as in the first. This, however, is the alteration produced in a

single revolution of the satellite ; but as the same applies to every
successive revolution, it follows that the inequality or variation of

the radius vector in the second case is nearly the same as in the

first case
;
and thus the proposition of the text is proved.

The inequality of the radius vector would be somewhat different

if the excentricity of the orbit in the second case were considerable,

partly because the places of conjunction would not be at equal an-

gular distances, partly because the disturbing forces would be

different, (as the distance between the satellites in conjunction

would not always be the same,) and partly because the effect of a

given force is really different, according to the part of the orbit at

6
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seconds; that of the second satellite is 3 days,

13 hours, 13 minutes, and 42 seconds; that of the

third satellite is, 7 days, 3 hours, 42 minutes, and

32 seconds. The periodic time of the second satel-

lite exceeds, by a small quantity, double that of

the first, so that the preceding investigations apply

which it acts. But where the excentricity is so small, as in the

orbit of Jupiter's third satellite, or in those of the old planets, the

alteration of the inequality of the radius vector produced by these

differences is hardly sensible.

The reasoning of this note may be applied, with the proper

alterations, to every case of perturbation, produced by a disturbing

force which is nearly independent of the form of the orbit ; and

as this will apply successively to each of the causes producing dis-

turbance, we shall at last arrive at the following general proposi-

tion : If several disturbing forces act on a planet or satellite, and

if we estimate the inequality in the radius vector, which each of

these would produce, supposing the orbit to have no excentricity

independent of perturbation ;
then the inequality really produced,

supposing the orbit to have an independent excentricity, will be

nearly the same as the sum of all the inequalities so estimated.

It is to be remarked, that if an orbit have an independent ex-

centricity, and if the orbit receive an alteration similar to an

elliptic inequality, (that is, if it be elongated on one side and

flattened on the other,) the orbit is still sensibly an ellipse, of

which the original focus is still the focus. Thus, in the instance

occupying the first part of this note, as the inequality impressed
ou the elliptic orbit in the second case is the same as the inequality

in the first case, that is, is similar to an elliptic inequality, the

orbit so altered^will still be an ellipse, whose excentricity and line of

apses are altered. We might, therefore, have obtained our results

by at once investigating the alterations of the excentricity and line

of apses produced by the disturbing forces
;
but the method

adopted in the text is simpler.
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to the motion of these two satellites. In fact, 275

revolutions of the first satellite are finished in

almost exactly the same time as 137 revolutions of

the second. If then, at a certain time, these two

satellites start from conjunction, they will be in

conjunction near the same place at every revolu-

tion of the second satellite, or at every second

revolution of the first satellite : but the line of con-

junction will regress slowly; and when the first

satellite has finished 275 revolutions, or one revo-

lution more than double the number made by the

second satellite, they will again be in conjunction

in the same place as before, the line of conjunction

having regressed till it has again reached the same

position : this takes place in 486 \ days.

(136.) From the preceding investigation then

it appears that, as these orbits have no excentricity

independent of perturbation, they will be elliptic,

and the line of apses of each orbit will regress so as

to turn completely round in 486-| days ; and that

when in conjunction, the first satellite will always

be in perijove, and the second satellite will always

be in apojove.

(137.) But the periodic time of the third satel-

lite is almost exactly double that of the second

satellite, exceeding the double by a. small quantity ;

G 2
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and on this account the orbit of the second satellite

will be distorted from the form which otherwise it

would have had,, by an inequality similar to that just

investigated. In a word, the line of conjunction of

the second and third satellites will slowly regress,

and the orbit of the second satellite will always be

compressed on the side next the points of con-

junction, and elongated on the opposite side
;
and

the orbit of the third satellite will always be elon-

gated on the side next the points of conjunction,

and compressed on the opposite side.

(138.) Now we come to the most extraordinary

part of this theory. We have remarked that 275

revolutions of the first satellite are finished in

almost exactly the same time as 137 revolutions of

the second; but it will also be found that 137 revo-

lutions of the second are finished in almost exactly

the same time as 68 revolutions of the third : all

these revolutions occupying 486^ days. Because 275

exceeds the double of 137 by 1, we have inferred

that the line of conjunctions of the first and second

satellites regresses completely round in 275 revo-

lutions of the first satellite, or in 486^- days. In

like manner, because 137 exceeds the double of 68

by 1, we infer that the line of conjunctions of the

second and third satellites regresses completely
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round in 137 revolutions of the second satellite, or

in 486] days. Hence we have this remarkable

fact: the regression of the line of conjunction of the

second and third satellites is exactly as rapid as the

regression of the line of conjunction of the first and

second satellites. So accurate is this law, that in

the thousands of revolutions of the satellites, which

have taken place since they were discovered, not

the smallest deviation from it (except what depends

upon the elliptic form of the orbit of the third

satellite) has ever been discovered.

(139.) Singular as this may appear, the follow-

ing law is not less so. The line of conjunction of

the second and third satellites always coincides with

the line of conjunction of the first and second satel-

lites produced backwards, the conjunctions of the

second and third satellites always talcing place on

the side opposite to that on which the conjunctions

of the first and second take place. This defines the

relative position of the lines of conjunction, which

(by the law of last article) is invariable. Like that

law it has been found, as far as observation goes,

to be accurately true in every revolution since the

satellites were discovered.

(140.) The most striking effect of these laws in

the perturbations of the satellites is found in the
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motions of the second satellite. In consequence of

the disturbing force of the first satellite, the orbit

of the second satellite will be elongated towards

the points of conjunction of the first and second

(130.), and consequently compressed on the oppo-

site side. In consequence of the disturbing force

of the third satellite, the orbit of the second satel-

lite will be compressed on the side next the points

of conjunction of the second and third (128.) And

because the points of conjunction of the second and

third are always opposite to the points of conjunc-

tion of
the^

first and second, the place of compression

from one cause will always coincide with the place

of compression from the other cause; and therefore,

the orbit of the second satellite will be very much

compressed on that side, and consequently very

much elongated on the other side. The excentri-

city of the orbit, [depending thus entirely on per-

turbation, exceeds considerably the excentricity of

the orbit of Venus. The inequalities in the mo-

tions of the satellites, produced by these excentrici-

ties, were first discovered (from observation) by

Bradley about A. D. 1740, and first explained from

theory by Lagrange, in 1766.

(141.) The singularity of these laws, and the

accuracy with which they are followed, lead us to
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suppose that they do not depend entirely on

chance. It seems natural to inquire whether some

reason may not be found in the mutual disturb-

ances of the satellites, for the preservation of such

simple relations. Now we are able to show that,

supposing the satellites put in motion at any one

time, nearly in conformity with these laws, their

mutual attraction would always tend to make their

motions follow these laws exactly. We shall show

this by supposing a small departure from the law,

and investigating the nature of the forces which

will follow as a consequence of that departure.

(142.) Suppose, for instance, that the third sa-

tellite lags behind the place defined by this law ;

that is, suppose that, when the second satellite is

at the most compressed part of its ellipse, (as pro-

duced by the action of the first satellite,) the third

satellite is behind that place. The conjunction

then of the second and third satellites will happen
before reaching the line of apses of the orbit of

the second, as produced by the action of the first.

Now in the following estimation of the forces which

act on the third satellite, and of their variation

depending on the variation of the positions of the

lines of conjunction, there is no need to consider

the influence which the ellipticity of the orbit of the
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second as produced by the third, or that of the

third as produced by the second, exerts upon the

third satellite ; because the flattening arising from

the action of the third, and the elongation arising

from the action of the second, will always be turned

towards the place of conjunction of the second and

third, and the modification of the action produced

by this flattening and elongation will always be the

same, whether the lines of conjunction coincide or

not. In fig. 37., let C be the perijove of the orbit

Fig. 37.

of the second satellite, (as produced by the action of

the 1st satellite alone,) D the point of the orbit of

the third which is in the line A C produced. If the

third satellite is at D when the second is at C,

the force produced by the second perpendicular to

the radius vector, retards the third before it reaches

D, and accelerates it after it has passed D, by

equal quantities. But if, as in tfye supposition

which we have made, the conjunction takes place

in the line AC x Di, the retardation of the third
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satellite before conjunction is produced by the

attraction of the second satellite before it arrives at

perijove, when it is near to the orbit of the third

satellite, (and therefore acts powerfully,) and

moves slowly, (and therefore acts for along time;)

while the acceleration after conjunction is produced

by the second satellite near its perijove, when it is

far from the orbit of the third satellite, (and there

fore acts weakly,) and moves rapidly (and there-

fore acts for a short time). The retardation there-

fore exceeds the acceleration
;
and the consequence

is, by (48.), that the periodic time of the third

satellite is shortened, and therefore its angular mo-

tion is quickened ; and therefore, at the next con-

junction, it will have gone further forward before

the second satellite can come up with it, or the line

of conjunction will be nearer to the place of perijove

of the second satellite, depending on the action of

the first. In the same manner, if we supposed the

third satellite moving rather quicker than it ought

in conformity with the law, the tendency of the

forces would be to accelerate it, to make its periodic

time longer, and thus to make its angular motion

slower. By the same kind of reasoning it will be

seen that there are forces acting on the first satel-

lite, produced by the elliptic inequality which the

o5
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third impresses on the orbit of the second, tending

to accelerate the angular motion of the first satel-

lite in the first case, and to retard it in the second.

The same reasoning will also show that both the first

and third satellite exert forces on the second, tend-

ing to retard its angular motion in the first case,

and to accelerate it in the second. All these ac-

tions tend to preserve the law : in the first case by

making the line of conjunctions of the first and

second satellite regress, and that of the second and

third progress, till they coincide; and in the second

case, by altering them in the opposite way, till they

coincide.

(143,) Perhaps there is no theoretical perma-

nence of elements on which we can depend with so

great certainty, as on the continuance of this law.

The greatest and most irregular perturbations of

Jupiter or of his satellites, provided they come

on gradually, will not alter the relation between

their motions
;
the effect of a resisting medium will

not alter it; though each of these causes would

alter the motions of all the satellites ;
and though

similar causes would wholly destroy the conclu-

sions which mathematicians have drawn as to the

stability of the solar system, with regard to the

elements of the planetary orbits. The physical
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explanation of this law was first given by Laplace,

in A. D. 1784.

(144.) We have terminated now the most re-

markable part of the theory of these satellites.

There are, however, some other points which are

worth attending to, partly for their own sake, and

partly as an introduction to the theory of the planets.

(145.) The orbit of the third satellite, as we

have mentioned, has a small excentricity indepen-

dent of perturbation. Consequently, when the con-

junction with the second takes place near the

independent perijove of the third, the effect of the

disturbance on the second is rather greater than at

any other time ; and this produces an irregularity

in the excentricity of the second, and in the motion

of its apses, depending on the distance of the line

of conjunction from the independent perijove of the

third. The departure from uniformity in the an-

gular motion of the third, also produces a depar-

ture from uniformity in the regression of the line

of conjunction, and this contributes to the same

irregularity.

(146.) The disturbing force in the direction of

the radius vector, produced by an inner satellite,

is sometimes directed to the central body and
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sometimes from it, but,, on the whole, the former

exceeds the latter. (86.) Now the principal part

of the effect really takes place when the satellites

are near conjunction ; consequently, when the line

of conjunction passes near the independent peri-

jove of the third satellite, the force by which the

third satellite is urged to the planet is greater than

at any other time; and as the line of conjunction

revolves, the force alternately increases and dimi-

nishes. This produces an irregularity in the major

axis, and consequently in the motion of the third

satellite (47.), depending on the distance of the

line of conjunction from the perijove of the third.

(147.) The disturbing force in the direction of

the radius vector produced by an outer satellite is

sometimes directed to the central body, and some-

times from it, but on the whole, the latter exceeds

the former. (80.) For the reasons, therefore, in'

the last article, there is in the morion of the second

satellite an irregularity depending on the distance

of the line of conjunction from the independent

perijove of the third, but opposite in its nature to

that of the third satellite.

(148.) Each of these irregularities in the motion

of one of these satellites produces an irregularity in
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the motion of the others; and thus the whole

theory becomes very complicated when we attempt

to take the minute irregularities into account.

(149.) The motion of the fourth satellite is not

related to the others in the same way in which they

are related among themselves. Its periodic time

is to the periodic time of the third nearly in the

proportion of 7 : 3. Some of the irregularities then

which it experiences and which it occasions are

nearly similar to those in the motions of the planets.

These, however,, are small ; the most important are

those depending on the changes in the elements

which require many revolutions of the satellites to

go through all their various states, but which,

nevertheless, have been observed since the satellites

were discovered. We shall proceed with these.

(150.) First, let us suppose that the third satel-

lite has no excentricity independent of perturbation,

and that the fourth satellite has a sensible excen-

tricity, its line of apses progressing very slowly, in

consequence principally of the shape of Jupiter,

(so slowly as not to have gone completely round

in eleven thousand revolutions of the satellite.)

When each of the satellites has revolved a few

hundred times round Jupiter, their conjunctions

will have taken place almost indifferently in every
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part of their orbits. If the orbit of the fourth as

well as that of the third had no independent ellip-

ticity, there would be no remarkable change of

shape produced by perturbation, as the action of

one satellite upon the other would be the same

when in conjunction in all the different parts of

the orbit. But the orbit of the fourth being ex-

centric, the action of each satellite on the other is

greatest when the conjunction happens near the

perijove of the fourth satellite. We may consider

then that the preponderating force takes place at

this part of the orbits ;
and we have to inquire

what form the orbit of the third satellite must

have, to preserve the same excentricity at every

revolution. It must be remembered here that the

effect of Jupiter's shape is to cause a more rapid

progress of the line of apses of the third satellite,

if its orbit be excentric, than of the line of apses of

the fourth.

(151.) Considering then that the preponderating

force on the third satellite in the direction of the

radius vector is directed from the central body
towards the perijove of the fourth, and that the

preponderating force perpendicular to the radius

vector accelerates it as it approaches that part, and

retards it afterwards, it is plain from (51.) (65.) and
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(66.) that, if the perijove of the third satellite were

in that position, the forces would cause the line of

apses to regress ;
and this regression, if the excen-

tricity of the third be small, may be considerable,

(though the preponderance of force which causes it

is extremely small,) and may overcome so much of

the progression caused by Jupiter's shape, as tomake

the real motion of the line of apses as nearly equal

as we please to the motion of the line of apses of

the fourth. But the motion of the line of apses of

the fourth will itself be affected (though very little)

by the greater action of the third satellite on it at

the same place; and the part in the radius vector

being directed at its perijove to the central body,

and the part perpendicular to the radius vector

retarding it before it reaches the perijove, and

accelerating it afterwards, will cause a small in-

crease of progression of its apse. The state of

things will be permanent, so far as depends on

these forces, when the increased progression of the

apse of the fourth satellite is equal to the dimi-

nished progression of the apse of the third; and

thus the progression of the apse of the fourth will

be somewhat increased, and the third satellite's

orbit will have a compression corresponding in

direction to the perijove of the fourth, and an
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elongation in the same direction as the apojove of

the fourth. This would be the case if the third

satellite had no excentricity independent of per-

turbation
; but we may, as in other cases, consider

that the same kind of distortion will be produced

in the orbit if it has an independent excentricity.

(152.) Now let us suppose the fourth satellite

to have no excentricity independent of perturbation,

and the third satellite to have an independent

excentricity. The greatest action will now be at

the apojove of the third satellite, and this will

(though in a small degree) cause the line of apses

of the third satellite to progress; that is, it will

increase the rapidity of progression which Jupiter's

shape gives it. If, now, we wish to discover the

form of orbit of the fourth satellite which will at

every revolution preserve the same excentricity,

and have its line of apses always corresponding

with that of the third satellite, and therefore pro-

gressing more rapidly than the shape of Jupiter alone

would make it progress, we must evidently suppose

the perijove of the fourth satellite turned towards

the apojove of the third, and, by supposing the

excentricity small enough, the progression may be

made as rapid as we please. Thus the effect of

excentricity in the orbit of the third satellite is, that
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its line of apses is made to progress rather more

rapidly, and that the orbit of the fourth satellite is

compressed on the side next the apojove of the

third satellite, and elongated on the opposite side.

We have supposed for this investigation that the

fourth satellite had no excentricity independent of

perturbation, but the conclusion as to the distortion

of the orbit may be applied if we suppose it to have

independent excentricity.

(153.) In fact, the orbits of both the third and

fourth satellites have independent excentricities,

and both our conclusions apply to them. The

fourth satellite, besides its independent excentricity,

has an excentricity impressed upon it, opposite in

kind to that of the third ;
and the third satellite,

besides its independent excentricity, has an excen-

tricity impressed upon it of the same kind as that

of the fourth. In the same manner, the orbits of

the first and second satellites have small excen-

tricities impressed on them, similar in their kind to

those of the third and fourth.

(154.) It will readily be conceived that the

excentricities of the orbit of the third satellite will

affect the great inequality (137.) which it produces

in the motion of the second
;
and on the contrary,

that the inequality in the motion of the third pro-
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duced by the attraction of the second, will influence

the effect of the third on the fourth. We shall

not,, however, notice these further than to state that

their effects are small.

(155.) We have now gone over the principal

inequalities of the motions of Jupiter's satellites.

They are so much connected, and (as we may say)

so completely entangled, that though they may be

explained in the way in which we have considered

them, it would hardly be possible to calculate them

in that way. A mathematical process of the most

abstruse kind, which will at the same time embrace

the motions of all, is alone competent to this ob-

ject. We shall, however, have attained our end if

we have given the reader a general idea of the

explanation of disturbances in the most curious

and complicated system that has ever been reduced

to calculation.

SECTION 7. Theory of Planets.

(156.) The theory of the planets may be con-

sidered as holding a middle place between that of

our moon and that of Jupiter's satellites. In our

moon, the principal inequalities are those that ex-

hibit themselves in nearly the same order at every
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revolution, or, at longest, in the earth's revolution

round the sun, depending entirely upon the relative

position of the moon, the sun, and the lines of

apses. In Jupiter's satellites, some of the principal

inequalities (as those of the third and fourth satel-

lites) do not depend at all upon the relative position

of the bodies, but depend on the position of the lines

of apses, whose revolutions, though slow, may yet

be completely observed. But in the planets, the

terms analogous to those which we have mentioned

in the moon's motions are small : the changes of

elements are so slow, that, though they may be in

some degree observed, many thousands of years

would be necessary to observe them completely.

The most remarkable irregularities are those pro-

duced by changes in the elements occupying several

revolutions of the planets, and more nearly analo-

gous to the mutual perturbations of the three first

satellites of Jupiter than to any other that we have

seen
; differing from them, however, in this respect,

that for most of them independent excentricities are

quite essential.

(157.) There are, however, some terms very

nearly similar to those mentioned in the theory of

the moon. Suppose, for instance, we consider the

perturbations of Mercury by Jupiter (whose distance
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from the sun is more than thirteen times as great.)

This case is almost exactly analogous to the case

of the moon disturbed by the sun. And in con-

sequence, Mercury^s orbit is flattened a little on

the sides nearest to and farthest from Jupiter ; but

this effect is much disguised by the effect of forces

analogous to those mentioned in (94.), which here

preponderates greatly : his line of apses progresses a

little at every revolution, when Jupiter is nearly in

that line, and regresses a little when Jupiter is in

the line perpendicular to it: his orbit is a little

more excentric in the former case, and a little less

so in the latter
;
and his orbit is a little larger when

Jupiter is at perihelion than when at aphelion.

The same thing applies very nearly to the disturb-

ances of Venus, the Earth, and Mars, produced by

Jupiter.

(158.) The instance taken above is almost an

extreme one. When we consider the perturbations

of two planets which are nearer to each other, we

are obliged to alter our conclusions considerably.

The disturbing force becomes so much greater

where the planets are near conjunction than at any

other part, that the orbit is much more changed there

than at any other part. However, the reasoning

upon which, in (91.), we determined the form of the
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moon's orbit, laying aside the consideration of inde-

pendent excentricity, will, to a certain extent, apply

here. The orbit in several cases will be flattened on

the side where conjunction takes place, and on the

opposite side, but generally most so on the latter ;

and will be made protuberant at the parts where

the disturbing force tends wholly to increase the

gravitation towards the sun. The same general

reasoning will, in many cases, help us to find the

form of the orbit which is influenced by the attrac-

tion of an interior planet.

(159.) A consideration, however, of particular

cases will show how cautious we must be in apply-

ing this conclusion. Suppose, for instance, we

consider the reciprocal perturbations of the Earth

and Mars. The periodic time of Mars is nearly

double that of the Earth. Here, then, we fall upon
an inequality of such a kind as that discussed in

(122.), &c., for the satellites of Jupiter. And

though the periodic time of Mars is not very nearly

double that of the Earth, so that the distortions

produced in the orbits of the Earth and Mars are

not very striking ;
still they are the greatest (of

those depending only on the position of the planets)

which these two bodies produce in each other's

motions. Here, then, the disturbance, which on a
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hasty view we might suppose analogous to the

variation of the Moon, becomes, from the small

disproportion of distances, and the near commensu-

rability of the periodic times, much more nearly

similar to the slow variation of the elements of

orbits.

(160.) It seems quite hopeless to attempt to

give a notion of the calculations by which, in all

the different cases, the disturbances independent of

the excentricities can be computed. It is sufficient

to state, that the same methods apply to all, and

that they are much more simple than those relating

to other points, of which an idea may be given by

general explanation.

(161.) Let us now consider the inequalities of

motion which depend on the excentricities and in-

clinations of the planets' orbits. The idea that

will probably first occur to the reader is this.
ff If

the disturbances of the planets, supposing their

orbits to have no independent excentricities, amount

only to a few seconds, how is it likely that the

small alterations of place, which are produced by
the trifling excentricities and inclinations of their

orbits, will so far alter their forces upon each other

as to produce any sensible difference in the mag-

nitude of the irregularities ?" In answer to this we
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must say,
<f It is true that these forces, or altera-

tions of forces, are exceedingly small, and those

parts of them which act in the same direction for a

short time only (as for a fraction of the periodic

time of a planet) do not produce any sensible

effect. But we can find some parts of them which

act in the same manner during many revolutions :

the effects of these may grow up in time to be sen-

sible; and those in particular which alter the mean

distance and the periodic time may produce in

time an effect on the longitude of the planet (49.),

very much more conspicuous than that in the alte-

ration of the orbit's dimensions."

(162.) In this consideration is contained the

whole general theory of those inequalities known

by the name of inequalities of long period. They
are the only ones depending on the excentricities

(besides those similar to the moon's evection)

which ever become important.

(163.) To enter more minutely into the expla-

nation, let us take the instance of the long inequa-

lity of Jupiter and Saturn : the most remarkable

for its magnitude, and for the length of time in

which the forces act in the same manner, as well as

for the difficulty which it had given to astronomers

before it was explained by theory, that has been



144 GRAVITATION.

noticed since the first explanation of the Moon's

irregularities.

(164.) The periodic times of Jupiter and Saturn

are very nearly in the proportion of 2 to 5, (the

periodic times being 4332 days, 17 hours, and

10,759 days, 5 hours,) or the number of degrees

of longitude that they will describe in the same

time, omitting all notice of their excentricities, will

be in the proportion of 5 to 2 nearly. Suppose,

now, that they were exactly in the proportion of

2 to 5 ;
and suppose that Jupiter and Saturn

started from conjunction; when Saturn has de-

scribed 240 degrees, Jupiter will have described

600 degrees (as these numbers are in the propor-

tion of 2 to 5) : but as 360 degrees are the circum-

ference, Jupiter will have gone once round, and

will besides have described 240 degrees. It will,

therefore, again be in conjunction with Saturn.

When Saturn has again described 240 degrees,

that is, when Saturn has described in all 480 de-

grees, or has gone once round and has described

120 degrees more, Jupiter will have described 1200

degrees, or will have gone three times round and

described 120 degrees more, and, therefore, will

again be in conjunction with Saturn. When Saturn

has again described 240 degrees, that is, when it
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has gone exactly twice round, Jupiter will have

gone exactly five times round, and they will again

be in conjunction. So* that, if the periodic times

were exactly in the proportion of 2 to 5, there would

be a continual succession [of conjunctions at the

points whose longitudes exceeded the longitude of

the first place of conjunction by 240, 120, 0, 240,

120, 0, &c. Thus, in fig. 38., if B, is the place

C2

%.38.

Cl

of Jupiter at first, and C
l
that of Saturn, Jupiter

will have gone quite round, and also as far in the

next revolution as B 2, while Saturn has described

part of a revolution only to C 2 : then Jupiter will

again have gone quite round, and also as far in the

next revolution as B 3, while Saturn has described

part of a revolution to C 3 : then Jupiter will have

performed a whole revolution, and part of another

to B while Saturn has performed part of a revo-

lution to G! : and then the same order of conjunc-

tions will go on again. If, then, the periodic times

were exactly in the proportion of 2 to 5, the con-

H
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junctions would continually take place in the same

three points of the orbits. This conclusion will not

be altered by supposing the orbits excentric : for

though the places of conjunction may then be some-

what altered, the conjunctions, after the third, (when

Saturn has gone round exactly twice, and Jupiter

exactly five times,) will go on in the same order,

and happen at the same places as before.

(165.) But the periodic times are not exactly in

the proportion of 2 to 5, but much more nearly in

the proportion of 29 : 72. This alters the distance

of the places of conjunction. We must now sup-

pose Saturn to move through 242* 79, and Jupiter

(by the proportion just mentioned) will then have

moved through 6020-
79, or through a whole cir-

cumference and 242 -79, and they will be in con-

junction again. The next conjunction will take

place when Saturn has moved through double this

angle, or 485'58, or when Saturn has performed a

whole revolution, and 125*58 of the next revolu-

tion : and the following conjunction will take place

when Saturn has moved through 728'37, or when

Saturn has gone twice round, and has described

8'37 more. Now, then, the same order of con-

junctions will not go on again at the same places as

before, but the next three after this will be shifted
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8'37 before the former places, the three following

the last-mentioned three will be again shifted 8*37,

and so on. The places of successive conjunction,

in fig. 38.,, will be at B 15 C^ 6 2 c 2, b a c 3 , 6 4 c 4, b
bi c^

b 6 c
6 , &c. The shifting of the places of conjunction

will take place in nearly the same manner,, whether

the orbits are excentric or not.

(166.) From this the following points are evk

dent :

First. In consequence of the periodic times being

nearly in the proportion of 2 to 5, many successive

conjunctions happen near to three equidistant points

on the orbits.

Secondly. In consequence of the proportion being

not exactly that of 2 : 5, but one of rather less ine-

quality, the points of conjunction shift forward, so

that each successive set of conjunctions is at points

of the orbits more advanced, by 8*37, than the

preceding one.

(167.) Let us now inquire how long it will b#

before the conjunctions happen at the same parts;

of the orbits as at first.

This will be when the series of points 6 4 ,
b

7, b^,
1

Sec., extends to B 3. For then the series 6 5, b e , b^
See., will extend to B t, and the series b^ 6 6, 6 9, &c.,

will extend to B 2 . The time necessary for this<
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will be gathered from the consideration, that in

three conjunctions the points are shifted 8 '37 :

and that the points must shift 120 from B p before

they reach B 3 : and that we may, therefore, use the

proportion, As 8'37 is to 3, so is 120 to 43 nearly,

the number of conjunctions that must have passed

before the points of conjunction are again the same.

And as Saturn advances 242'79 between any con-

junction and the next, he will, at the forty-third

conjunction from the first, have described 10440,

or 29 circumferences
;
and Jupiter, therefore, (by

the proportion of their periodic times,) will have

described 72 circumferences. The time, then, in

which the conjunctions return to the same points

is twenty-nine times Saturn's periodic time, or

seventy-two times Jupiter's periodic time, or about

855 years *.

(168.) Now let us examine into the effects of

this slow motion of the points of conjunction upon

the*fforces which one body exerts to disturb the

other.

(169.) If the orbits had no independent excen-

tricity, it would affect them no further than by the

periodical distortion which would take place at

* These numbers are not quite exact : the proportion of 29 : 72

not being quite accurate.
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every conjunction. There would be nothing in one

set of conjunctions, more than in another, which

could affect the dimensions of the orbits.

(170.) But if the orbits are not circular, this is

no longer true. It is not the same thing whether the

conjunctions take place at BI C u B 2 C2, and B3 C3,

fig. 39., or at bi clf 62 c-2, and 63 c3 . The distances of

Fig. 39.

the planets are not the same, and consequently the

forces which they exert on each other are not the

same ;
also their velocities are different in different

parts of their orbits, or at different points of conjunc-

tion, and therefore the times during which they can

act on each other are not the same. It is true that, in

the figure, the distance at 62 c2 is less than at B2 C2,

while that at b3 c3 is greater than at B3C3 ;
and

thus there is a partial compensation in the changes

of the effects produced in different points of the

orbit. But it can be discovered only by very com-

plete calculations, whether the compensation is per-

fect or not. The calculations necessary for this
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purpose are probably the most complicated that

physical science has ever given occasion for
;
and

the reader must not here expect the smallest account

of them. This only can be stated as a result, that

in no instance in the planetary system is the com-

pensation perfect, and that the chances for its being

perfect in any case are infinitely small.

(171.) We have here considered the varying

influence of one body on the other at conjunction,

as depending entirely on the excentricities of the

two orbits. But there is another circumstance

which may also cause the influence to vary. The

orbits may be inclined, and this will affect both the

distance of the bodies and the direction in which

they attract each other.

(172.) In the case, then, of Jupiter and Saturn,

we have the two planets acting on each other with

forces which are nearly the same at every third

conjunction, but are not exactly the same, and

whose variations occupy a period of 850 years.

Of these forces, parts are in the direction of the

radius vector, and these tend directly to affect the

major axes of the orbit described : other parts are

perpendicular to the radius vector, sometimes acce-

lerating and sometimes retarding; and these tend

(though in opposite ways) to affect the major axes
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of the orbits. There are, therefore, forces tending

to alter the major axes of the orbits, which go

through all their changes only in 850 years. Bur-

ma- half of this time they tend to make the major

axis of Jupiter's orbit less, and that of Saturn's

orbit greater;
and during the other half they tend

to make the major axis of Jupiter's orbit greater,

and that of Saturn's orbit less. This coincidence,

in time, of the increase of one major axis with the

decrease of the other, is the result of investigation

that we cannot explain here.

(173.) After the partial compensation that we

have mentioned, it will readily be understood that

the varying force which produces these effects is

small. So small, indeed, is it, that after acting

more than 400 years, it has increased (or dimi-

nished) the major axis of Saturn's orbit only by

-j^Vyth part, and diminished (or increased) that of

Jupiter's orbit only by ^yVirth part. These altera-

tions would hardly be discoverable with our best

instruments. But during 400 years the major axis

of each orbit differs from the major axis during the

next 400 years by a part of these quantities : the

planet's rate of annual angular motion is, for 400

years, constantly less than its average rate
;
and for

the next 400 years it is constantly greater than its
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average rate : and in this lenMh of time the ne-D D

quality in longitude may (49.) grow up into a

most formidable quantity. In fact, the inequality

thus produced in Saturn's longitude amounts to

about 4.8', by which its true place is sometimes

before and sometimes behind its mean place : that

in Jupiter's longitude amounts to about 21'. (The

greatest inequality of any other planet does not

exceed 3', and the greatest of the planets inferior to

Jupiter does not exceed 25".) The theoretical

explanation of these inequalities was first given by

Laplace in 1785.

(174.) The magnitude of these inequalities in

the motions of Jupiter and Saturn, as we have seen,

depends principally on the length of time during

which the forces act in the same manner; first, be-

cause in this long time they can produce a sensible

alteration in the major axis and annual angular mo-

tion ; secondly, because the two planets move for so

long a time with this altered angular motion. But

it must also be borne in mind, that these two planets

are by far the largest in the system ; the mass of

Jupiter being 300 times that of the earth, and the

mass of Saturn being 100 times that of the earth

(the next of the planets in the order of magnitude,

except Uranus).
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(175.) The same general reasoning, by which

we have shown that there is a periodical inequality

of the major axis of either of these orbits, will also

show that there is a periodical inequality in the

excentricity and in the place of the perihelion. It

will also appear, in the same way, that these effects

are the remainder, after partial compensation of

effects in different parts of the orbit. Thus, if one

conjunction happen when Jupiter is going toward

aphelion, the effect of Saturn's disturbing force is

to pull Jupiter from the sun; and therefore, by

(59.), to increase the excentricity of Jupiter's orbit.

But it is then perfectly certain that either the next

conjunction, or the next but one, or perhaps both

these, will happen at a part where Jupiter is going

towards perihelion; and then, by (59.), the excen-

tricity of Jupiter's orbit is diminished. Similar

reasoning applies to the excentricity of Saturn's

orbit. It becomes, then, a matter of calculation,

whether the compensation is perfect or not. Now
it appears, upon investigation, that the compensa-

tion is not perfect, but that, while the points of con-

junction shift through 120, the effect of the uncom-

pensated part is, for half the time, to increase the

excentricity, and for half the time to diminish it.

It appears, also, that there is no necessary con-

H r
J
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nexion between the time at which the excentricity

is greatest or least, and that when the major axis

is greatest or least ;
so that we cannot assert that

when the major axis is greatest the excentricity is

greatest, or the contrary ;
or that the excentricity

of one is greatest when that of the other is greatest:

all that we can assert is, that the excentricity of

each orbit occupies the same time in going through

its changes from greatest to least, as the major axis

occupies in going through its change from greatest

to least. The effect on the planet's distance from

the sun, produced by the change of excentricity, is

much more considerable than that from the change

in the major axis ; being for Jupiter^ x^Vo of his

whole distance, and for Saturn TTT of his whole

distance.

(176.) Similar remarks apply, in every respect,

to the motion of the perihelion of each orbit. Each

is made to progress during 425 years, and to regress

during 425 years ;
but there is no necessary rela-

tion between the time when one has progressed fur-

thest, and the time when the other has progressed

furthest. There is, however, a necessary relation

between the change of excentricity and the motion

of the perihelion of each orbit : the excentricity of

either oibit has its mean value when the perihelion
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of that orbit has progressed furthest or regressed

furthest
;
and when the excentricity is either great-

est or least, the perihelion is at its mean place.

(177.) We have taken the long inequality of

Jupiter and Saturn as the most imposing by its

magnitude, and the most celebrated for its history

(as, before it was explained theoretically, astrono-

mers were completely bewildered by the strange

irregularity in the motion of these planets). But

there are several others which, in theory, are as

curious. Eight times the periodic time of the earth

is very nearly equal to thirteen times the periodic

time of Venus ;
and this produces, in the motions

of the earth and Venus, a small inequality, which

goes through all its changes in 239 years. Four

times the periodic time of Mercury is nearly equal

to the periodic time of the earth, and this produces

an inequality whose period is nearly 7 years. The

periodic time of Mars is nearly double of the earth's,

and this produces a considerable inequality, de-

pending on the excentricities, &c., besides that

mentioned in (159.), which was independent of the

excentricities. Twice the periodic time of Venus is

nearly equal to five times that of Mercury ; three

times the periodic time of Venus is nearly equal to

that of Mars; three times the periodic time of
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Saturn does not much differ from that of Uranus.

Each of these approximations to equality gives rise

to an equation of sensible magnitude, and of long

period, in the motion of both planets.

(178.) But it will easily be seen that the defect

of compensation, on which the effects depend, is

much greater in some cases than in others. TheO

conjunctions of the earth and Mars take place at

only one point, and the points near it, for several

revolutions : those of Venus and Mars take place

only at two opposite points and their neighbour-

hood, (as each successive conjunction takes place

when Mars has described half a revolution, and

Venus 1J revolution;) those of Jupiter and Saturn,

as we have seen, at three points ; those of Venus

and the earth at five points. It is evident that, in

the first of these, the whole effect of the change of one

point of conjunction has its influence in altering the

orbit's dimensions
;
that in the second there is only

the difference between two effects; that in the

third there is the mixture of three, which tend to

balance ;
that in the next there is the mixture of

five in the same way. The smaller, then, is this

number of points, the more favourable are the cir-

cumstances (supposing the same length of period

for the inequality) for producing a large inequa-
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lity. This number of points is always the same

as the difference between the two least numbers,

expressing nearly the proportion of the periodic

times. Thus we may expect to find a large ine-

quality when the periodic times of two planets are

very nearly in the same proportion as two numbers,

whose difference is small.

(179.) We shall now proceed to mention the

secular variations of the elements of the orbits of

planets. By this term is meant those variations

which do not depend upon the positions of the

planets in their orbits, or the places of conjunction,

but merely upon their relative distances and excen-

tri cities, and the positions oftheir lines of apses. They

are, therefore, the variations which depend upon the

mean or average action of one planet upon another

in the long run : all the sensible departures from the

secular variation, produced by the irregularity of the

action of one planet upon another, being supposed to

be contained in the inequalities already discussed.

(180.) First, then, with regard to the mean dis-

tance of a planet. If we consider an exterior pla-

net disturbing an interior one, (as Saturn disturb-

ing Jupiter,) the disturbing force in the direction

of the radius vector, by (77.)* &c^ tends sometimes

to draw it from the sun, sometimes to draw it to-
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wards the sun, but the former is the greater, and we

may therefore consider the force as, upon the whole,

diminishing the sun's attraction. This, by (46.),

alters the relation between the periodic time and

the mean distance, so that the mean distance is less

than it would have been with the same periodic

time, had there been no disturbance. If we con-

sider an interior planet disturbing an exterior one,

(as Jupiter disturbing Saturn,) the disturbing force

tending to draw it to the sun is greatest ;
and here

the mean distance is greater than it would have

been with the same periodic time, had there been

no disturbance. But so long as these general effects

in the force directed to the sun continue unaltered,

the mean distances will not alter (46.), &c. Now,

upon taking a very long period, (as several thousand

years,) it is easy to see that, if we divide that pe-

riod into two or three parts, the two planets have

in each of those parts been in conjunction indiffe-

rently in all parts of their orbits ;
that they have

had every possible relative position in every part ;

and that (if we make the periods long enough)

the force which one planet has sustained in any

one point will be accurately the mean of all which it

would sustain, ifwe estimated all those that it could

suffer from supposing the other planet to go with
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its usual motion through the whole of its orbit. As

this mean will be the same for each of the periods,

there will, in the long run, be no alteration of the

force in the direction of the radius vector,, and we

may assert at once that the mean distance cannot

be altered by it.

(181.) But with regard to the disturbing force

acting perpendicularly to the radius vector, the

circumstances are different. The mere existence of

such a force, without variation, causes an alteration

in the mean distance (48.) ;
and it is necessary to

show that the nature and variations of the force are

such that, in the long run, the velocity of the dis-

turbed planet is not affected by it. For this pur-

pose, instead of considering merely the disturbing

force perpendicular to the radius vector, we will

consider separately the whole force which the dis-

turbing planet exerts on the sun, and the whole

force which it exerts on the disturbed planet. Now,
the force which it exerts on the sun tends to pull

the sun sometimes in one direction and sometimes

in another, but, on the whole, produces no perma-

nent displacement : this force, then, may at once

be neglected. The force which one planet has ex-

erted on the other has acted when, for any arbitrary

position of the disturbing planet, the disturbed



160 GRAVITATION.

planet has been at every point of its orbit. Since

the whole acceleration produced in a long time is

the sum of all the accelerations diminished by the

sum of all the retardations, we may divide them

into groups as we please, and sum each group.

Let us, then, group together all the accelerations

and retardations produced in one position of the

disturbing planet. The disturbed planet having

been in every small part of its orbit, during a time

proportional to the time which it would occupy in

passing through that small part in any one revolu-

tion, the various accelerations and retardations will

bear the same proportion as if the disturbed planet

had made one complete revolution, and the dis-

turbing planet had been fixed. Now, it is a well-

known theorem of mechanics, that when a body

moves through any curve, acted on by the attrac-

tions of any fixed bodies, its velocity, when it reaches

the point from which it started, is precisely the same

as when it started : the accelerations and retarda-

tions having exactly balanced. Consequently, in

the case before us, if the disturbing planet had

been fixed, and the disturbed planet had made one

.complete revolution, the latter would, on the whole,

have been neither accelerated nor retarded
; and,

therefore, in the long run, all the accelerations and
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retardations of the disturbed planet, produced in

any arbitrary position of the disturbing planet,, will

exactly balance. The same may be shown for every

position of the disturbing planet ;
and thus, on the

whole, there is no alteration of velocity. Since,

then, in the long run, the planet's velocity is not

altered, and since (180.) the force directed to the

sun is not altered, the planet's mean distance will

not be altered. This reasoning does not prevent

the increase or diminution of the velocity at parti-

cular parts of the orbit, and therefore the eccentri-

city and the line of apses may vary ; but it shows

that, if there is an increase at one part, there is a

diminution that balances it at another ; and at the

point where the orbit at the beginning of a long

time, and the orbit at the end of that time inter-

sect, (which will be at mean distance nearly,) the

velocity will not be altered.

Our demonstration supposes that the portions of

the curves described in different revolutions, for

the same position of the disturbing planet, are parts

of one orbit, and therefore does not take account of

the alteration in the magnitude of the disturbing

force produced by the alteration of place which

that force has previously caused. This has been

taken into account, to a certain degree, by several
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mathematicians, and it appears, as far as they have

gone, that this produces no alteration in the con-

clusion.

(182.) Secondly, as to the place of perihelion, or

the position of the line of apses. The motion of

this will depend essentially on the excentricity of

the orbit of the disturbing planet. Suppose, for

instance, that the orbit of Venus was elliptical and

the earth's orbit circular ; as the distance of these

planets in conjunction is little more than 1th of the

earth's distance from the sun, the ellipticity of the

orbit of Venus would bring that planet at aphelion

so much nearer to the earth's orbit, that by far the

greatest effect would take place when in conjunction

there; and this, by (54.), would make Venus' line

of apses progress. But if the earth's orbit were

more elliptic than that of Venus, and if the earth's

perihelion were on the same side of the sun as the

perihelion of Venus, it might happen that the prin-

cipal action would take place at perihelion, and

then, by (51.), the line of apses would regress.

These effects would continue to go on, while the

relative position of the lines of apses, and the pro-

portion of the excentricities, remained nearly the

same. As, in the long run, conjunctions would

happen everywhere, the preponderating effect would
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be similar to the greatest effect
;

and thus, the

secular motion of the line of apses will be constant,

(till the positions of the lines of apses, &c. shall have

changed considerably;) its magnitude and direction

will depend on the excentricities of both orbits ;

but if the disturbed planet is the interior, and if

the orbit of the other be not excentric, the line of

apses will progress. The same is true, if the dis-

turbed planet is exterior (the greatest action being

then at the perihelion, if the interior orbit have no

excentricity, and being directed to the sun.)

(183.) Thirdly, as to the excentricity. If the

orbit of the disturbing planet were circular, the

effect on the excentricity produced by conjunction

at the place where the orbits are nearest, would be

of one kind before conjunction, and of the opposite

kind after conjunction, from the disturbing force in

the radius vector, as well as from that perpendicular

to the radius vector; and thus the excentricity

would not be altered. The same would happen if

both orbits were excentric, provided their lines of

apses coincided. Thus it appears that there is no

variation of excentricity, except the orbit of the dis-

turbing planet is excentric, and its line of apses

does not coincide with that of the disturbed planet.

When these conditions hold, (as they do in every
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planetary orbit,) a general idea of the effect may
be obtained by finding where the orbits approach

nearest ; then, if we consider the disturbance of the

interior planet, since the force draws it from the

sun, the excentricity will be increased if it is moving

from perihelion, or diminished if it is moving to-

wards perihelion. For the exterior planet, as the

force draws it towards the sun, the conclusion will be

of the opposite kind. These effects are constant,

till the exceritricities and the positions of the lines

of apses have changed sensibly. The place where

the force at conjunction produces the greatest effect

on the excentricity may not be strictly the place

where the orbits are nearest, but probably will not

be far removed from that place.

At the place where the orbits approach nearest,

both planets in general are moving from perihelion,

or both towards perihelion, so that when one ex-

centricity is increased, the other is diminished.

(184.) For the general stability of the planetary

system, the positions of the lines of apses are not

important, but the permanency of the major axes

and the excentri cities are of the greatest importance.

The conclusion which we have mentioned as to the

absence of secular variation of the major axis, from

the action of one planet, applies also to the dis-
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turbances produced by any number of planets, and

thus we can assert that the major axes of the orbits

of the planets are not subject to any secular

variation. The excentricities are subject to se-

cular variation, but even this corrects itself in a

very long time : when the investigation is fully

pursued, it is found that each of the excentricities

is expressed by a number of periodic terms, the

period of each being many thousands ofyears. Thus

the major axis of the earth's orbit, notwithstanding

its small and frequent variations, has not sensibly

altered in many thousands ofyears, and will not sen-

sibly alter
;
the excentricity, besides suffering many

small variations, has steadily diminished for many
thousands of years, and will diminish for thousands

of years longer, after which it will again increase.

(185.) A remarkable relation exists between the

variation of the excentricities, (of which that men-

tioned in (183.) is a simple instance,) the result of

which, as to the state of the excentricities at any

time, is given thus : The sum of the products of

the square of each excentricity by the mass of the

planet, and by the square root, of the major axis,

is always the same.
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SECTION VIII. Perturbation of Inclination and

Place of Node.

(186.) WE have hitherto proceeded as if the

sun, the moon, and all the planets, revolved in the

same plane as if, for instance, the sun were fixed

in the centre of a table, and all the planets, with

their satellites, revolved on the surface of the table.

But this supposition is not true. If we suppose

the earth to revolve on the surface of the table, the

moon will, in half her revolution, (we mean while

she describes 180, not necessarily in half her

periodic time,) rise above the table, and in the

other half she will go below it, crossing the surface

at two points which, as seen from the earth, are

exactly opposite. Venus will, in half her revolu-

tion, rise above the table, and in half will sink be-

low it, crossing the table at two points which, as

seen from the sun, are exactly opposite ; each of

the other planets and satellites in like manner

crosses the plane at points which, as seen from the

central body, are exactly opposite. In different

investigations it is necessary to consider the incli-

nation of the plane of revolution or the plane of the

orbit to different planes of reference : the line in

which the plane of revolution crosses the plane of
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reference is called the line of nodes on that plane ;

and the angle which the plane of revolution makes

with the plane of reference is called the inclination

to that plane. The plane of reference must always

be supposed to pass through the central body.

(187.) The inclinations of all the orbits, except

those of the small planets, are so trifling, (the

largest namely, that of the moon's orbit to the

earth's orbit being, at its mean state, only 5,) that

they may in general be wholly neglected in esti-

mating the disturbance which one planet produces

in the motion of another in its own plane. In some

cases, however, as in the inequalities of long period,

where the effective force is only the small part

which remains after a compensation more or less

perfect, no alteration ofthe forces must be neglected ;

and here, as we have hinted in (171.)* the inclina-

tions must be taken into account.

(188.) But though the alteration which the in-

clination produces in the forces that tend to disturb

the body's motion in its plane may, in most cases,

be neglected, yet the force which tends to pull the

body above the plane or below the plane cannot be

neglected. In almost every case this force will be

less than the force tending to disturb the motion

in the plane, yet it will be much greater than the
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alteration which the inclination produces in that

force. It is our object in this section to show the

nature of the alteration which is produced by the

force tending to pull the body from the plane.

(189.) First, then, as to the effect of a force

generally which acts perpendicularly to the plane

of revolution. (We shall confine ourselves at pre-

sent to forces which act perpendicularly to the

plane, because it is evident that forces which act

in, or parallel to, the plane of the orbit, whether in

the radius vector or perpendicularly to it, will not

cause the planet to depart from that plane.) Let

fig. 40, be a perspective representation of an orbit,

and a plane of reference. Suppose MAN to be

the line of nodes at which the plane of the orbit

NBiBa crosses the plane of reference DE; the

central body A being in the line of nodes, and the

part of the orbit marked by a dark line being

above the plane, and that marked by a dotted

line being below it. Suppose that the planet has

moved from N to B t , and that at BI, before it
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reached the point highest above the plane D E,

a force pulls it down towards the plane. After

a short time, instead of going to B 2, where it

would have been if no force had disturbed it, it will

be found at b2, having described B! 62 , instead of

B! B 2 . It is plain that the orbit in which the

planet must have moved without a disturbing force,

in order to describe B^g now, could not be N B l

,

but must be such a curve as n B
t , crossing the

plane D E at a point in the situation of the point n.

Therefore, if no more disturbing forces act, the

planet, which has described B t
b2 as if it came

without disturbance from n, will go on to describe an

orbit as if it had come without disturbance from n,

and will therefore describe an orbit n B
t b^m, cross-

ing the plane E F in the points n and ra. The

line of nodes is changed from M A N to m A n.O

(190.) Here the line of nodes has twisted in a

direction opposite to the planet's motion, or has

regressed. The inclination of the new plane is

evidently less than that of the old one, since it

passes through the same point B, and cuts the

plane of reference in a line more distant from B

than the line in which the old one cut it, or the

inclination is diminished.

(191.) Now, if we conceive that at ~&3,fifj. 41,

i
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after the planet has passed the point highest above

the plane,, a force tends to pull it towards the plane,

the planet, instead of going to B4, will go to 64, and

Fig. 41. D

instead of crossing the plane D E at M, will cross

it at m ; and then, if it is not disturbed again, will

proceed in an orbit of which B3 6
4 m is a part, and

which will cross the plane D E at the points m and

n. The new line of nodes has twisted here also in

the direction opposite to the direction of the planet's

motion, or has regressed. But the inclination of

the new plane is greater than that of the old one,

since it passes through the same point B3 , and cuts

the plane of reference in a line less distant from

B3 than the line in which the old one cut it, or the

inclination is increased.

(192.) We have^ then, this general result : If a

force acting perpendicularly to the orbit tends to

draw the planet towards the plane of reference, it

always causes the line of nodes on that plane to

regress : while the planet is moving from a node

to the point highest above the plane of reference, it
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diminishes the inclination to that plane ;
and while

the planet is moving from the highest point to a

node, it increases the inclination.

(193.) In the same manner, if the force tends

to draw the planet from the plane of reference, it

always causes the line of nodes to progress. While

the planet is moving from a node to the point highest

above the plane, it increases the inclination
;
and

while the planet is moving from the highest point

to a node, it diminishes the inclination.

(194.) Similar results would have been obtained

if we had considered the action of the force while

the planet is in that part of its orbit which is on

the other side of the plane D E.

We shall now proceed with the consideration of

the force perpendicular to the orbit, which is pro-

duced by the attraction of a disturbing body*

(195.) First : it is plain that, if the disturbing

body is in the plane of the orbit (produced, if ne-

cessary) ,
it will not tend to draw either the central

body or the planet out of that plane, and therefore

will produce no disturbing force perpendicular to the

plane of the orbit. Proceeding, then, with the sup-

position that the disturbing body is not in the plane

of the orbit ; and supposing fig. 42, to be a per-

spective view of an orbit B2 Bj B3 (which, to assist

i2
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our ideas, may be conceived to differ little from a

circle) with the disturbing body C out of the plane

of the orbit, let us take three points B
x
B 2 B3 , of

Fig. 42.

<**

which Bj is at the same distance as A from C, B2 is

nearer to C, and B3 farther from C than A is. Sup-

pose that the attraction of C draws A in a certain

small time through the space A a, and that when

the planet is at B 1? or B 2 , or B 3, the attraction draws

the planet in the same time through BX&I, or B2 b2 ,

or B3 63 respectively. Then (as in (71.) ) the

attraction of C upon the two bodies A and B would

produce no disturbance in their relative motions,, if

it drew them through equal spaces in the same

direction. Draw B : dly B2 d2 , B3 <i each equal and

parallel to A
;
then if the attraction had drawn BI to

dlt there would have been no disturbance, and con-

sequently the real disturbance at B
x
is represented

by a force which would have drawn the planet from

dl to 5
X
. Similarly, the real disturbances at B2 and

B3 are represented by forces which would have

drawn the planet from dz to b.2} and from d3 to b 3

respectively. Now, since C Biis equal to C A, the
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forces of C upon A and B t are equal, and therefore

B! bi is equal to A a, and therefore a 61 is parallel

to A Bu and therefore is in the same straight line

with b
l di ;

and consequently at Bt the whole dis-

turbing force is parallel to the radius vector,, and

there is no part perpendicular to the plane of the

orbit. But at B2 the planet is nearer to C, the

force therefore on the planet is greater, and B2 bz is

therefore greater than A a or B 2 d.2 ; also it is more

nearly perpendicular to the plane of the orbit than

B2 dz ;
and consequently 62 is farther from the plane

of the orbit than dz ;
and therefore the disturbing

force d2 b2 is directed from the plane of the orbit

towards the side on which C is. On the contrary,

at B 3 the planet is farther from C
;
the force on the

planet is therefore less : arid B 3 b3 is therefore less

than A a or B 3 ds ; moreover it is inclined more to

the perpendicular than B 3 d3) and consequently ba

is nearer to the plane of the orbit than d3 ; and

therefore the disturbing force d3 63 is directed from

the side on which C is. Thus we find,

(196.) When the central and revolving bodies

are equally distant from the disturbing body, there

is no disturbing force perpendicular to the plane

of the orbit.

(197.) When the revolving body is nearer the
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disturbing body than the central body is, the dis-

turbing force perpendicular to the plane tends to

draw the revolving body out of the plane to that

side on which the disturbing body is.

(198.) When the revolving body is farther from

the disturbing body than the central body is, the

disturbing force perpendicular to the plane tends

to draw the revolving body out of the.plane to the

side opposite the disturbing body.

We may now apply these conclusions to the alte-

ration of the node and inclination of the moon's

orbit produced by the sun's attraction. The plane

of reference is here supposed to be the plane of the

earth's orbit.

(199.) First : suppose the line of nodes of the

moon's orbit to be in syzygies, or to pass through

the sun. Here the sun is in the moon's orbit pro-

duced, and therefore by (189), there is no disturb-

ing force perpendicular to the moon's orbit.

(200.) Secondly: suppose the line of nodes to

be in quadratures, or to be perpendicular to the

Fig. 43.
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line drawn from the earth to the sun, as in fig. 43.

The sun, in the figure, may be considered as being

below the plane of the moon's orbit. Also, the

moon's distance from the earth being small, the

points, at which the moon's distance from the sun

is the same as the earth's, are very nearly the same

as the points of quadrature, or (in the case before

us) they are very nearly the same as the nodes.

Consequently, while the moon moves from B4

through Bi to B2 , she is nearer to the sun than the

earth is, and therefore the disturbing force, by (197.),

tends to pull her downwards from the plane of her

orbit : while the moon moves from B 2, through B 3,

to B4, she is farther from the sun than the earth is,

and therefore the disturbing force tends to pull her

upwards from the plane of her orbit. In the case

before us, then, the disturbing force is always di-

rected towards the plane of reference. Consequently,

by (192.), while the moon moves from B 4 to Bi, the

line of nodes is made to regress, and the incli-

nation is diminished ; while the moon moves from

Bi to B 2, the line of nodes regresses, and the incli-

nation is increased ; while the moon moves from

B2 to B 3, the line of nodes regresses, and the incli-

nation is diminished : and while the moon moves

from Ba to B4, the line of nodes regresses, and the
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inclination is increased. The inclination, there-

fore, is not sensibly altered in a whole revolution,

but the line of nodes regresses during the whole

of the revolution.

(201.) Thirdly: suppose the line of nodes to

be in such a position that the moon passes the

line of nodes in going from quadrature to syzygy,

as in fig. 44. Here the sun is to be considered

as below the moon's orbit, and, therefore, while

the moon moves from B
4, through BI to B 2, the

Fig. 44,

disturbing force tends to pull her down from the

plane of the orbit, and while she moves from B2,

through B3 to B4 , the force tends to pull her up

from the plane of her orbit. Therefore, in going

from B4 to N, the force pulls the moon from the

plane of reference ;
and causes thereby a progression

of the line of nodes and a diminution of the incli-

nation (193.) ;
in going from N to the highest point

O, the force pulls the moon towards the plane of

reference; and, therefore, causes the nodes to re-

gress, and the inclination to diminish, (192.); in

going from the highest point O to B 2 ,
the force

still pulls the moon towards the plane of refer-
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ence; and, therefore, still causes the nodes to

regress,, but causes the inclination to increase.

Thus while the moon moves from B4 to N, the

force causes the line of nodes to progress, and

while she moves from N to B 2, it causes the

line of nodes to regress ; and,, similarly, while she

moves from B2 to M, the force causes the line of

nodes to progress ; and while she moves from M to

B4, it causes the line of nodes to regress. On the

whole, therefore, the line of nodes regresses, but

not so rapidly as in the second case. Also, while

the moon moves from B4 to O, the inclination is

diminished, and while she moves from O to B2 the

inclination is increased; and, similarly, while she

moves from B 2 to P the inclination is diminished
;

and while she moves from P to B4 the inclination

is increased. On the whole, therefore, the inclina-

tion is diminished.

(202.) Fourthly: suppose the line of nodes to

be in such a position that the moon passes it in

going from syzygy to quadrature, as in fig. 45.

Fig. 45.

Here, also, the sun is below the plane of the orbit

produced j and, therefore, from B4 to B 2 the force

i 5
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tends to pull the moon down from her orbit ;
and

from B8 to B4 it tends to pull her up from it. As in

the last case it would be seen, that while the moon

moves from B4 to M, the line of nodes regresses,

while from M to B
2,

the line of nodes progresses ;

while from B 3 to N, the lines of nodes regresses ;

and while from N to B 4, the line of nodes pro-

gresses. On the whole, therefore, the line of nodes

regresses. Also, it will be seen, that while the moon

moves from B4 to O, the inclination is diminished ;

while from O to B2 the inclination is increased; while

from B2 to P, the inclination is diminished ; and

while from P to B4 , the inclination is increased. On

the whole, therefore, the inclination is increased.

The same reasoning would apply, and lead to

the same conclusions in every respect, if we sup-

posed the moon's orbit inclined in the opposite

direction.

(203.) Now the earth moves round the sun,

and, therefore, the sun appears to move round the

earth, in the same direction in which the moon

moves round the earth. If then we begin with the

state in which the line of nodes is passing through

the sun (and in which neither the node nor the

inclination undergoes any change, by the first

case), we come next to the state in which the
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moon passes the line of nodes in going from

quadrature to syzygy (in which the node regresses

and the inclination diminishes, by the third case) ;

then we come to the state in which the line of

nodes coincides with the line of quadratures (in

which the node regresses rapidly, and the inclina-

tion is not altered, by the second case) ; then we

come to the state in which the moon passes the

line of nodes in going from syzygy to quadrature

(in which the node regresses and the inclination is

increased, by the fourth case) ;
and then we come

to the state in which the line of nodes again passes

through the sun. This is when the sun has de-

scribed, apparently, half a revolution round the

earth (or rather less, in consequence of the regres-

sion of the node), and in the other half revolution,,

the same changes in every respect take place in the

same order. The inclination, therefore, is greatest

when the line of nodes passes through the sun, or

coincides with the line of syzygy ;
and is least

when the line of nodes coincides with the line of

quadratures; since it is constantly diminishing

while we are going from the former state to the

latter, and constantly increasing while we are

going from the latter state to the former, This is
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the principal irregularity in the inclination of the

moon's orbit
;

all the others are very small.

(204.) The line of nodes is constantly regress-

ing at every revolution of the moon, except when

the line of nodes passes through the sun. The

annual motion which we might at first expect it to

have, is somewhat diminished by the circum-

stance, that the rapid regression of the line of

nodes, when in the position in which the greatest

effect is produced, carries it from the line of

quadratures more swiftly than the sun's progres-

sive motion only, by making the line of quadra-

tures to progress, would separate them. But as

the line of nodes never progresses, the diminution

of the motion of the line of nodes occasioned thus,

is very much less than the increase of the motion

of the line of apses, (107.) Also, as the force

acting on opposite points of the orbit, tends to

produce effects of the same kind, there is no irre-

gularity similar to that explained in (106.) Hence

the actual regression of the line of nodes, though a

little less than might at first be expected, differs

from that regression by a much smaller quantity

than that, by which the actual motion of the line

of apses differs from the motion which at first we
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might expect it to have. The line of nodes

revolves completely round in something more than

nineteen years.

(205.) The effect of the irregularity in the re-

gression of the nodes, and the effect of the alter-

nate increase and diminution of the inclination, are

blended into one inequality of latitude, which de-

pends on the sun's longitude, the longitude of the

moon's node, and the moon's longitude. This

inequality was discovered (from observation) by

Tycho Brahe, about A.D. 1590. It may be con-

sidered to bear the same relation to the inclination

which the evection bears to the excentricity ; and,

like the evection in longitude, it is the greatest of

the inequalities in latitude. It is, however, much

less than the evection ;
its greatest effect on the

moon's latitude being about 8', by which the mean

inclination is sometimes increased and sometimes

diminished.

(206.) There are other small inequalities in the

moon's latitude, arising partly from the changes

in the node and inclination, which take place

several times in the course of each revolution,

(200.), &c. ; partly from the excentricity of the

orbits of the moon and the earth, partly from the

distortion accompanying the variation, and partly
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from the variability of the inclination itself. We
shall not, however, delay ourselves with the expla-

nation of all these terms.

(207.) We shall now proceed with the disturb-

ance of the planets in latitude.

In this inquiry it is always best to take the orbit

of the disturbing planet for the plane of reference.

Now let us first consider the case of Mercury or

Venus disturbed by Jupiter. In this case,, Jupiter

revolving in a long time round the sun, which is

the central body to Mercury or Venus, produces

exactly the same effect as the sun revolving (or

appearing to revolve) round the earth, which is the

central body to the moon. The disturbing force

of Jupiter, therefore, produces a regression of the

nodes of the orbits of Mercury and Venus on

Jupiter's orbit; and an irregularity in the motion

of each node, and an alteration in the inclination,

whose effects might be combined into one : and

this is the only inequality in their latitude, pro-

duced by Jupiter, whose effects are sensible.

(208.) The other inequalities in latitude, de-

pending on the relative position of the planets,

possess no particular interest ; and a general notion

of them may be formed from the remarks in the

discussion of the motion of the moon's node. One



MOTION OF PLANETS' NODES. 183

case, however,, may be easily understood. When
an exterior planet is disturbed by the attraction of

an interior planet, whose distance from the sun is

less than half the distance of the exterior planet,

and whose periodic time is much shorter, then the

exterior planet is always further from the interior

planet than the sun is, and therefore, by (195.),

there is a disturbing force urging it from the plane

of reference when the planets are in conjunction,

and to it when they are in opposition ; and thus

the exterior planet is pushed up and down for every

conjunction of the two planets. The disturbance,

however, is nothing when the exterior planet is at

the line of its nodes (195.).

(209.) The near commensurability of periodic

times, which so strikingly affects the major axis,

the excentricity, and the place of perihelion, pro-

duces also considerable effects on the node and

the inclination. The reasoning of (175.) and

(176.) will in every respect apply to this case: the

greatest effect is produced, both on the motion of

the node and on the change of inclination, when the

planets are in conjunction : the gradual alteration

of the point of conjunction produces a gradual

alteration of these effects, which, however (in such

a case as that of Jupiter and Saturn), is partially
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counteracted by the gradual change of the other

points of conjunction : the uncompensated part,,

however, may, in many years, produce a very sen-

sible irregularity in the elements. If we put the

words line of nodes for line of apses, and inclination

for excentricity , the whole of the reasoning in (175.),

&c., will apply almost without alteration.

(210.) For the secular variation of the position

of the orbit, the following considerations seem suf-

ficient. In the long run, the disturbed planet has

been at every one point of its orbit a great number

of times, while the disturbing planet has been at

almost every part of its orbit. The disturbing

force is always the difference of the forces which act

on the sun and on the disturbed planet. As the

disturbing planet, in these various positions, acts

upon the sun in all directions in the plane of its

orbit, its effect on the sun may be wholly neglected ;

and then it is easy to see that, whether the dis-

turbing planet be exterior or interior to the other,

the combined effect of the forces in all these points

on the disturbed planet at one point, is to pull it

from its orbit towards the plane of the disturbing

planet's orbit. (This depends upon the circum-

stance that the force is greatest when the disturbing

planet is nearest.) Consequently, by (192.), the
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line of nodes of the disturbed planet's orbit on the

disturbing planet's orbit, in the long run, always

regresses. If the orbits are circular, there is no

alteration of the inclination, since, at points equally

distant from the highest point, there is the same

force on the disturbed planet; and, therefore, by

(192.), the inclination is increased at one time, and

diminished as much at another. If the orbits are

elliptic, one point may be found where the effect of

the force on the inclination is greater than at any

other, and the whole effect on the inclination will

be similar to that.

(211.) In stating that the nodes always regress

in the long run, the reader must be careful to re-

strict this expression to the sense of regressing on

the orbit of the disturbing planet. It may happen
that on another orbit they will appear to progress.

Thus the nodes of Jupiter's orbit are made to re-

gress on Saturn's orbit by Saturn's disturbing force.

The nodes of these orbits on the earth's orbit are

not very widely separated : but the inclination of

Saturn's orbit is greater than that of Jupiter's. If

we trace these on a celestial globe, we shall have

such a figure as^r. 46. ; where E C represents the

plane of the earth's orbit, J E the orbit of Jupiter,

and S T that of Saturn. The orbit of Jupiter, by
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Fig. 46.

regressing on Saturn's orbit, assumes the position

of the dotted line j e ; but it is plain that the inter-

section of this orbit with the earth's orbit has gone

in the opposite direction, or has progressed. If the

motion of the node on Saturn's orbit from J to j is

regression, the motion of the node on the earth's

orbit from E to e must be progression.

(212.) There is a remarkable relation between

the inclinations of all the orbits of the planetary

system to a fixed plane, existing through all their

secular variations, similar to that between their ex-

centricities. The sum of the products of each mass,

by the square root of the major axis of its orbit, and

by the square of the inclination to a fixed plane, is

invariable.

(213.) The disturbance of Jupiter's satellites in

latitude presents circumstances not less worthy of

remark than the disturbance in longitude. The

masses are so small, and their orbits so little in-

clined to each other, that the small inequalities

produced in u revolution may be neglected. Even
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that depending on the slow revolution of the line of

conjunctions of the first three satellites, so small is

the mutual inclination of their orbits, does not

amount to a sensible quantity. We shall, therefore,

consider only those alterations in the position of

the planes of the orbits which do not vary sensibly

in a small number of revolutions. For this pur-

pose, we must introduce a term which has not been

introduced before.

(214.) If the moon revolved round the earth in

the same plane in which the earth revolves round

the sun, the sun's attraction would never tend to

draw the moon out of that plane. But (taking

the circumstances as they really exist,) the moon

revolves round the earth in a plane inclined to the

plane in which the earth revolves round the sun ;

and the consequence, as we have seen, is, that the

line of nodes upon the latter plane regresses, and

the inclination of the orbit to the latter plane re-

mains, on the whole, unaltered. The plane of the

earth's orbit, then, may be considered a funda-

mental plane to the moon's motion ; by which term

we mean to express, that if the moon moved in that

plane, the disturbing force would never draw her

out of it
; and that if she moved in an orbit in-

clined to it, the orbit would always be inclined at
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nearly the same angle to that plane, though its line

of nodes had sensibly altered. The latter condi-

tion will, in general, be a consequence of the

former.

(215.) In order to discover what will be the funda-

mental plane for one of Jupiter's satellites, we must

consider that, besides the sun's attraction, there is

another and more powerful disturbing force acting

on these bodies, namely, the irregularity of attrac-

tion produced by Jupiter's flatness. The effect of

this (as we shall show) is always to pull the satel-

lites towards the plane of Jupiter's equator. If

Jupiter were spherical, the only disturbing force

would be the sun's attraction, tending on the whole

to draw the satellite towards the plane of Jupiter's

orbit, and that plane would be the fundamental

plane of the satellite. If Jupiter were flattened,

and if the sun did not disturb the satellite, the ir-

regularity in Jupiter's shape would always tend to

draw the satellite towards the plane of his equator,

and the plane of his equator would be the funda-

mental plane of the satellite. As both causes exist,

the position of the actual fundamental plane must

be found by the following consideration. We must

discover the position of a plane from which the

sun's disturbing force tends, on the whole, to draw
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the satellite downwards, and the disturbing force

depending upon Jupiter's shape, tends to draw it

upwards (or vice versa) by equal quantities ; and

that plane will be the fundamental plane. This

plane must lie between the planes of Jupiter's orbit

and Jupiter's equator, because thus only can the

disturbing forces act in opposite ways, and there-

fore balance each other : and it must pass through

their intersection, as otherwise it would at that part

be above both or below both, and the forces de-

pending on both causes would act the same way.

(216.) The disturbing force of the sun, as we

have seen, (82.), &c., is greater as the satellite is

more distant ;
the disturbing force depending on

Jupiter's shape is then less, as we shall mention

hereafter. Consequently, as the satellite is more

distant, the effect of the sun's disturbing force is

much greater in proportion to that depending on

Jupiter's shape. Thus, if there were a single satel-

lite at the distance of Jupiter's first satellite, its

fundamental plane would nearly coincide with the

plane of Jupiter's equator, if, at the distance of

Jupiter's second satellite, its fundamental plane

would depart a little farther from coincidence with

the plane of the equator ;
and so on for other dis-

tances ;
and if the distance were very great, it
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would nearly coincide with the plane of Jupiter's

orbit. If, then, Jupiter's four satellites did not

disturb each other, each of them would have a

separate fundamental plane, and the positions of

these planes would depend only upon each satel-

lite's distance from Jupiter.

(217.) In fact, the satellites do disturb each

other. In speaking of the planets (210.), we have

observed that the effect of the attraction of one

planet upon another, in the long run, is to exert a

disturbing force tending to draw that other planet

(at any part of its orbit) towards the plane of the

first planet's orbit. The same thing is true of

Jupiter's satellites. Now, though each of them

moves generally in an orbit inclined to its funda-

mental plane, yet in the long run (when the nodes

of the orbit have regressed many times round,) we

may consider the motion of each satellite as taking

place in its fundamental plane. The question,

therefore, must now be stated thus. The four

satellites are revolving in four different fundamental

planes ; and the position of each of these planes is

to be determined by the consideration that the

satellite in that plane is drawn towards the plane of

Jupiter's orbit by the sun's disturbing force, to-

wards the plane of Jupiter's equator by the force
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depending on Jupiter's shape, and towards the

plane of each of the other three satellites, by the

disturbing force produced by each satellite : and

these forces must balance in the long run.

(218.) The determination of these planes is not

very difficult,, when general algebraical expressions

have been investigated for the magnitude of each

of the forces. The general nature of the results

will be easily seen ; the several fundamental planes

will be drawn nearer together (that of the first

satellite, that of the second, and that of the third,

will be drawn nearer to Jupiter's orbit, while that

of the fourth will be drawn nearer to Jupiter's

equator.) The four planes will still pass through

the intersection of the plane of Jupiter's equator

with that of Jupiter's orbit. Thus, if we conceive

the eye to be placed at a great distance, in the in-

tersection of the planes of Jupiter's orbit and Jupi-

ter's equator, and if the dotted lines in fig. 47 re-

Fig. 47.

present the appearance of the fundamental planes

which would exist if the satellites did not disturb

each other, then the dark lines will represent the
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positions of these planes as affected by the mutual

disturbances. The inclination of Jupiter's equator

to Jupiter's orbit is about 3 5' ; and so great is the

effect of his shape, that the fundamental plane of

the first satellite is inclined to his equator by only

7"; that of the second satellite by about 1'; that of

the third by about 5' ;
and that of the fourth by

about 24'. Without mutual perturbation,, the

inclinations to Jupiter's equator would have been

about 2", 20'', 4', and 48'.

(219.) Having considered the positions of the

fundamental planes, we shall now consider the mo-

tion of a satellite, when moving in an orbit inclined

to its fundamental plane.

(220.) The general effect will be of the same

kind as that for the moon. Since the disturbing

force which then tends to pull it from the plane of

its orbit, tends to pull it towards the fundamental

plane (as, supposing the satellite to be on that side

of the fundamental plane next the plane of Jupiter's

equator, the sun's disturbing force towards Jupiter's

orbit is increased, that towards Jupiter's equator is

diminished, and so for the others), the line of nodes

will regress on the fundamental plane. The incli-

nation on the whole will not be altered. That part

of the regression of the nodes which depends on the
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sun's disturbing force will be greater for the distant

satellites than for the near ones ;
but that which

depends on the shape of Jupiter (and which is much

more important) will be greater for the near satel-

lites than for the distant ones. On the whole,

therefore,, the lines of nodes of the interior satellites

will regress more rapidly than those of the exterior

ones. Their annual regressions (beginning with the

second) are, in fact, 12, 2 32', and 41 '.

(221.) But the disturbing force of one satellite

upon the others will be altered by the circum-

stance of its orbit not coinciding with its funda-

mental plane ; and the orbit remains long enough

in nearly the same position to produce a very sen-

sible irregularity. To discover the nature of this,

we must observe that the force of one satellite, per-

pendicular to the orbit of another, depends wholly

upon the inclination of the two orbits, so that, upon

increasing the inclination, the disturbing force is

affected. Suppose now, to fix our ideas, the second

satellite moves in an orbit inclined to its funda-

mental plane ;
what is the kind of disturbance that

it will produce in the latitude of the first satellite ?

First, it must be 'observed, that when moving in

the fundamental planes, the forces depending upon

the inclination of those planes were taken into

K
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account in determining the position of those planes;

so that here we have to consider only the alteration

produced by the alteration in the second satellite's

place. Next, we shall proceed in the same manner

as in several preceding instances, by finding what

is the motion of the first satellite, related to the

motion of the second satellite, which can exist per-

manently with this inclination ofthe second satellite.

Now, in whatever part the actual orbit of the second

is higher above, or less depressed below, the orbit of

the first, than the fundamental plane of the second

was, at that part there will be a greater force drawing

the first satellite up, or a smaller force drawing it

down, (in the conjunctions at that part,) than

before. The alteration of force, then, will be gene-

rally represented by supposing a force to act on the

first satellite, at different points of its orbit, towards

the same side of its orbit as the side on which the

second satellite's orbit is there removed from its

fundamental plane, and proportional to the magni-

tude of that removal. Now, conceiving the inequa-

lity introduced into the motion of the first satellite

to be a small inclination of its orbit to its funda-

mental plane, (which is the only inequality of Ju-

piter's satellites that we consider,) the nodes of this

orbit cannot correspond to the places where the
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second satellite is furthest from its fundamental

plane ;
for then, at one node of the first satellite, the

disturbing force, before and after passing that node,

being great, and not changing its direction, would

not alter the place of the node, but would greatly

alter the inclination : and at the opposite node, the

force acting in the opposite direction would pro-

duce the same effect ;
and thus the permanency of

the inequality would be destroyed. We must then

suppose the nodes of the orbit of the first satellite

on its fundamental plane to coincide with those of

the orbit of the second satellite on its fundamental

plane. But is the inclination to be the same way,

or the opposite way ? To answer this, we must

consider that the action of Jupiter's shape would

tend to make the nodes of the first satellite regress

much more rapidly than those of the second ; but

as our orbit of the first satellite is assumed to ac-

company the second in its revolution, the disturbing

force depending on the second must be such as to

destroy a part of this regression, or to produce

(separately) a progression of the nodes of the first;

consequently, the disturbing force produced by the

second must tend to draw the first from its funda-

mental plane. (193.) But the disturbing force

produced by the second is in the same direction as
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the distance of the second from the fundamental

plane of the second ; consequently, the orbit of

the first must lie in the same position, with regard

to the fundamental plane of the first, in which the

orbit of the second lies with regard to the funda-

mental plane of the second. The same reasoning

applies to every other case of an interior satellite

disturbed by an exterior
;
and thus we have the

conclusion : If the orbit ofone of Jupiter's satellites

is inclined to its fundamental plane, it affects the

orbit of each of the satellites interior to it with an

inclination of the same kind, and with the same

nodes.

(222.) Let us now inquire what will be the na-

ture of the inequality produced in the latitude of

the third satellite. The same reasoning and the

same words may, in every part, be adopted, except

that the regression of the nodes of the third satel-

lite, as produced by Jupiter's shape, will be slower

than that of the second satellite, and therefore the

disturbing force which acts on the third, must now

be such as to quicken the regression of its nodes,

and must therefore be directed towards its funda-

mental plane. From this consideration we find, as

a general conclusion, if the orbit of one of Jupiter's

satellites is inclined to its fundamental plane, it
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affects the orbit of each of the satellites exterior to

it, with an inclination of the opposite kind, but with

the same nodes.

(223.) The first satellite's orbit appears to have

no sensible inclination to its fundamental plane ;

but those of the second, third, and fourth are in-

clined to their fundamental planes, (the second 25',

and the third and fourth about 12/) and these are

found to produce in the others inequalities such as

we have investigated.

(224.) It is only necessary to add, that the dis-

turbance of the first satellite by the second pro-

duces an alteration in the action of the first on the

second, tending to draw the second from its fun-

damental plane, and therefore to dimmish, by a

small quantity, the regression of its nodes. In the

same manner, the altered action of the third on the

second tends to draw the second towrards its fun-

damental plane, and therefore to increase, by a

small quantity, the regression of its nodes. There

is exactly the same kind of complication with re-

gard to the disturbances of those bodies in latitude

as with regard to those in longitude, explained in

(150.), &c.

(225.) The only other inequality in latitude,

which is sensible, is that depending on the position
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of the sun, with regard to the nodes of the orbits

on the plane of Jupiter's orbit, (that is, with re-

gard to the node of Jupiter's equator on Jupiter's

orbit,) and this amounts to only a few seconds. It

is exactly analogous to that of the moon, explained

in (205.).

SECTION IX. Effects of the Oblateness of Planets

upon the Motions of their Satellites.

(226.) IN the investigations of motion about a

central body, we have supposed that central body

to be a spherical ball. This makes the investiga-

tion remarkably simple ;
for it is demonstrated by

mathematicians, that the spherical form possesses

the following property : the attraction of all the

matter in a sphere upon another body at any dis-

tance external to it is exactly the same as if all the

matter of the sphere were collected at the centre of

the sphere. In the investigation of motion about

a centre, we may therefore lay aside (as we have

usually done) all consideration of the size of the

attracting body, if that body is spherical.

(227.) But the planets are not spherical. Whe-

ther or not they have ever been fluid, still they
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they have (at least, the earth has) a great extent

of fluid on its surface, and the form of this fluid

will be affected by the rotation of the planet. The

fluid will spread out most where the whirling motion

is most rapid, that is, at the equator. Thus it ap-

pears from theory, and it is also found from mea-

sures, that the earth is not a sphere, but a spheroid,

flattened at the north and south poles, and protu-

berant at the equator. The proportion of the axes

differs little from the proportion of 299 : 300 ; so

that a line drawn through the earth's centre, and

passing through the equator, is longer than one

passing through the poles, by 27 miles.

(228.) The flattening of Jupiter is still more re-

markable. The proportion of his axes differs little

from that of 13 : 14, and thus the difference of his

diameters is nearly 6000 miles. In fact, the eye

is immediately caught by the elliptic appearance

of Jupiter, on viewing him for a moment in a

telescope.

(229.) It is our business, in the present section,

to point out the general effects of this shape upon
the motion of satellites. The agreement of obser-

vation with calculation on this point is certainly

one of the most striking proofs of the correctness

of the theory,
f ' that every particle of matter attracts
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every other particle, according to the law of Uni-

versal Gravitation."

(230.) We will begin with explaining the law

according to which an oblate planet attracts a

satellite in the plane of its equator.

The spheroid represented by the dark line in

fi(j.
48 may be supposed to be formed from the

sphere represented by the dotted line, by cutting

off a quantity of matter from each pole. To

simplify our conception, let us suppose that all the

D

E

matter cut off was in one lump at each pole; that

is, at the points D and E. The attraction of

the whole sphere on the satellite B, as we have

remarked, is the same as if all the matter of the

sphere were collected at A. But the attraction of

the part cut off is not the same as if it were col-

lected at A, inasmuch as its distance from B is

greater, and as the direction of the attraction to

D, or to E, is not the same as that to A. Thus,

suppose AD is called 1, and AB is called 10.

Since the forces are inversely as the squares of the

distances at which the attracting mass is situate,
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the attraction of the lump D, if at the point A,

where its distance from B is 10, may be called

T J-F ; but if at D, it must be called T|T, since the

square of B D is equal to the sum of the squares

of B A and A D, that is, to the sum of 100 and 1.

Also the direction of attraction is not the same
;

for, if the attraction of D should draw the satel-

lite through B b, and if b c be drawn perpendicular

to A B, the only effective approach to A is the

distance B c, which is less than B b in the propor-

tion of BA to B D, or of 10 to >/10l ; and,

therefore, the effective attraction of D, estimated

by the space through which it draws the satellite

towards A, must be called =. And
101 xV 101

this is the whole effect which its attraction pro-

duces
;

for though the attraction of D alone tends

to draw the satellite above A B, yet the attraction

of E will tend to draw it as much below A B
;
and

thus the parts of the force which act perpendi-

cular to A B will destroy each other. We have,

then : the attraction of the lump D, if placed at

A, would be represented by y^=iO-01 ; but as

placed at D, its effective attraction is represented

K5
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10

by
--=_ =0-0098518. The difference is

101 x V101

0-0001482, or nearly 1QQQOQ
th of the whole at-

traction of D, and the same for E. Consequently,

the lumps at D and E produce a smaller effective

attraction on B than if they were collected at A
;

but the whole sphere produces the same effect as

if its whole mass were collected at A ; and, there-

fore, the part left after cutting away the lumps at

D and E produces a greater attraction than if its

whole mass were collected at A.

(231.) But it is important to inquire, whether

this attraction is greater than if the matter of the

spheroid were collected at the centre, in the same

proportion at all distances of the satellite. For

this purpose, suppose the distance of the satellite

to be 20. The same reasoning would show, that

the attraction of the lump D, if placed at A, must

now be represented by = 0-0025
;
but that, if

placed at D, its effective attraction is represented by

20 __. __ 0-002490653. The difference now
401

is 0-000009347, or nearly of the whole at-
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traction of D. Consequently by removing the

satellite to twice the distance from A, the difference

between the effective attraction of the lump at A
and at D, bears to the whole attraction of the

lump at A, a proportion four times smaller than

before. And, therefore, the attraction of the sphe-

roid, though still greater than if its whole matter

were collected at A, differs from that by a quan-

tity, whose proportion to the whole attraction is

only one-fourth of what it was before. If we tried

different distances in the same manner, we should

find, as a general law, that the proportion which the

difference (of the actual attraction, and the attrac-

tion supposing all the matter collected at the

centre) bears to the latter, diminishes as the square

of the distance from A increases.

(232.) The attraction of an oblate spheroid

upon a satellite, or other body, in the plane of its

equator, may, therefore, be stated thus : There is

the same force as if all the matter of the spheroid

were collected at its centre, and, besides this, there

is an additional force, depending upon the oblate -

ness, whose proportion to the other force dimi-

nishes as the square of the distance of the satellite

is increased.

(233.) Now, let us investigate the law accord-



204 GRAVITATION.

ing to which an oblate spheroid attracts a body,

situate in the direction of its axis.

Proceeding in the same manner as before, and

supposing the distance A B to be 10, the attraction

of the lump, which at A would be represented by

f-o-o-j
will at D be represented by T̂) and will at E

be represented by -^-^ (since the distances of D
and E from B are respectively 9 and 11.) Hence,

if the two equal lumps, D and E, were collected

Fig. 49.

at the centre, their attraction on B would be

loo +
Too

=
Bo

= '02 ' In the P sitions D

and E, the sum of their attractions on B is

81
+

I2l
~ '0206100 ' The difference is

0-0006100, by which the attraction in the latter

case is the greater. Consequently, the attraction

of the lumps in the positions D and E is greater



POLAR ATTRACTION DIMINISHED. 205

than if they were collected at the centre by nearly

yfyth of their whole attraction; but the attraction

of the whole sphere is the same as if all the matter

of the sphere were collected at the centre ; therefore,

when these parts are removed, they must leave a

mass, whose attraction is less than if its whole

matter were collected in the centre. With regard

to the alteration depending on the distance of B, it

would be found, on trial, to follow the same law as

before.

(234.) The attraction of a spheroid on a body

in the direction of its axis may, therefore, be repre-

sented, by supposing the whole matter collected at

the centre, and then supposing the attraction to be

diminished by a force depending on the oblateness,

whose proportion to the whole force diminishes

as the square of the distance of the body is in-

creased.

(235.) Since the attraction on a body, in the

plane of the equator, is greater than if the mass of

the spheroid were collected at its centre, and the

attraction on a body in the direction of the axis is

less, it will readily be understood, that in taking

directions, successively more and more inclined to

the equator, on both sides, the attraction succes-

sively diminishes. And there is one inclination, at
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which the attraction is exactly the same as if the

whole mass of the spheroid were collected at its

centre.

(236.) Now, suppose that a satellite revolves in

an orbit, which coincides with the plane of the

equator, or makes a small angle with it
;
what will

be the nature of its orbit ? For this investigationo

we have only to consider, that there is acting upon

the satellite a force, the same as if all the matter

of the spheroid were collected at its centre, and,

consequently, proportional inversely to the square

of the distance, and that, with this force only, the

satellite would move in an ellipse, whose focus

coincided with the centre of the spheroid. But

besides this, there is a force always directed to the

centre, depending on the oblateness. One effect

of it will be, that the periodic time will be shorter

with the same mean distance, or the mean dis-

tance greater with the same periodic time, than if

the former were the only force. (46.) Another effect

will be, that when the satellite is at its greatest

distance, this force will cause the line of apses to

regress, and when at its smallest distance, this

force will cause the line of apses to progress. (50.)

and (53.). If this force, at different distances,

were in the same proportion as the other attractive
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force, it would,, on the whole, cause no alteration

in the position of the line of apses, (for it would

amount to the same as increasing the central mass

in a certain proportion, in which case an ellipse,

with invariable line of apses, would be described ;

that is, the regression at the greatest distance

would be equal to the progression at the least dis-

tance. See the note to (98.) ).
But (231.) the

proportion of this force to the other diminishes as

the distance is increased. Consequently, the re-

gression at the greatest distance is less than the

progression at the least distance, and, therefore, on

the whole, the line of apses progresses. Also, the

nearer the satellite is to the planet, the greater is

the proportion of this force to the other attraction
;

and, therefore, the more rapid is the progression

of the line of apses at every revolution. The pro-

gression of the line of apses of the moon's orbit,

produced by the earth's oblateness, is so small in

comparison with that produced by the sun's dis-

turbing force, that it can hardly be discovered ;

but the progression of the lines of apses in the

orbits of Jupiter's satellites, produced by the

oblateness of Jupiter, is so rapid, especially for

the nearest satellites, that the part produced by
the sun's disturbing force is small in comparison

with it.
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(237.) We shall now proceed with the investi-

gation of the disturbance in a satellite's latitude,

produced by the oblateness of a planet.

(238.) First, It is evident that if the satellite's

orbit coincides with the plane of the planet's

equator, there will be no force tending to pull it

up or down from that plane; and, therefore, it

will continue to revolve in that plane. In this

case, then, there is no disturbance in latitude; we

must, therefore, in the following investigation,

suppose the orbit inclined to the plane of the

equator.

In fig. 50., then, let us consider (as before) the

effect of the attractions of the two lumps at D and

E, in pulling the satellite B perpendicularly to the

line A B. Now D is nearer to B than E is ;
also

the line D B is more inclined than E B to A B.

Fig. 50.

If the attraction of D alone acted, it would in a

certain time draw the satellite to d; audfd would
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be the part of the motion of B, which is perpendi-

cular to A B
;
and this motion is upwards. Tn

like manner, if the attraction of E alone drew B

to e in the same time, g e would be the motion

perpendicular to A B, and this motion is down-

wards. When both attractions act, these effects

are combined; the question then is, which is

greater, fd or g e ? Now, since D is nearer than

E, the attraction of D is greater than that of E,

therefore B d is greater than Be; also B d is more

inclined than Be to B A
;
therefore df is much

greater than g e. Hence, the force which tends to

draw B upwards is the preponderating force
;
and

therefore, on the whole, the combined attractions of

D and E will tend to draw the satellite upwards

from the line B A. But the attraction of the whole

sphere would tend to draw it along the line B A.

Therefore, when D and E are removed, the attrac-

tion of the remaining mass (that is, the oblate

spheroid) will tend to draw B below the line

B A. In estimating the attraction of an oblate

spheroid, therefore, we must consider, that besides

the force directed to the centre of the spheroid,

there is always a force perpendicular to the radius

vector directed towards the plane of the equator,

or tending to draw a satellite from the plane of
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its orbit towards the plane of the planet's equator.

If the satellite is near to the planet, the inequality

of the proportion of the distances D B and E B is

increased, and the inequality of the inclinations to

B A is also increased
;

and the disturbance is,

therefore, much greater for a near satellite than for

a distant one.

(239.) We have seen (215.) the effect of this

disturbing force in determining the fundamental

planes of the orbits of Jupiter's satellites. And

from (192.), &c., we can infer, at once, that this

force will cause the line of nodes to regress, if

the orbit is inclined to the fundamental plane,

and the more rapidly as the satellite is nearer

to the planet. If there were no other disturbing

force, the inclination of those orbits to the plane of

Jupiter's equator would be invariable, and their

nodes would regress with different velocities, those

of the near satellites regressing the quicker. In

point of fact, the circumstances of the inner satel-

lites are very nearly the same as if no other dis-

turbing force existed, so great is the effect produced

by Jupiter's oblateness.

(240.) The figure of Saturn, including in our

consideration the ring which surrounds him, is

different from that of Jupiter ; but the same prin-
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ciples will apply to the general explanation of its

effects on the motion of its satellites. The body of

Saturn is oblate, and the forces which it produces

are exactly similar to those produced by Jupiter.

The effect of the ring may be thus conceived : -If

we inscribe a spherical surface in an oblate sphe-

roid, touching its surface at the two poles, the

spheroid will be divided into two parts ;
a sphere

whose attraction is the same as if all its matter

were collected at its centre, and an equatorial pro-

tuberance analogous in form to a ring. The whole

irregularity in the attraction of the spheroid is evi-

dently due to the attraction of this ring-like pro-

tuberance, since there is no such irregularity in the

attraction of the sphere. We infer^ therefore, that

the irregularity in the attraction of a ring is of the

same kind as the irregularity in the attraction of a

spheroid, but that it bears a much greater propor-

tion to the whole attraction for the ring than for

the spheroid, since the ring produces all the irregu-

larity without the whole attraction. Now, the

plane of Saturn's ring coincides with the plane of

Saturn's equator, so that the effect of the body and

ring together is found by simply adding effects of

the same kind, and is the same as if Saturn were

very oblate. The rate of progression of the perisa-
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turnium of any satellite, and the rate of regression

of its node, will, therefore, be rapid. In other re-

spects it is probable, that, the theory of these satel-

lites would be very simple, since all (except the

sixth) appear to be very small, and the sun's dis-

turbing force is too small to produce any sensible

effects.

(241.) The satellites of Saturn, except the sixth,

have been observed so little, that no materials exist

upon which a theory can be founded. A careful

series of observations on the sixth satellite has

lately been made by Bessel, from which, by com-

paring the observed progress of the perisaturnium

and regression of the node, with those calculated

on an assumed mass of the ring, the real mass of

the ring has been found. It appears, thus, that

the mass of the ring (supposing the whole effect due

to the ring) is about TT^th of the mass of the planet.

(242.) The effect of the earth's oblateness in

increasing the rapidity of regression of the moon's

nodes is so small, that it cannot be discovered from

observation. But the effect on the position of the

fundamental plane is discoverable. We have seen

(204.) that the moon's line of nodes regresses com-

pletely round in 19J years. The plane of the

earth's equator. is inclined 23% to the earth's orbit,
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and the line of intersection alters very slowly. At

some time, therefore, the line of nodes coincides

with the intersection of the plane of the earth's

equator and the plane of the earth's orbit, so that

the plane of the moon's orbit lies between those two

planes ; and 9J years later, the line of nodes again

coincides with the same line, but the orbit is in-

clined the other way, so that the plane of the

moon's orbit is more inclined than the plane of the

earth's orbit to the plane of the earth's equator.

Now it is found, that in the former case the incli-

nation of the moon's orbit to the earth's orbit is

greater than in the latter by about 16", and this

shows, that the plane to which the inclination has

been uniform, is neither the plane of the earth's

equator, nor that of the earth's orbit, but makes

with the latter an angle of about 8", and is inclined

towards the former.

(243.) There is another effect of the earth's

oblateness (the only other effect on the moon

which is sensible) that deserves notice. The incli-

nation of the moon's orbit to the earth's orbit is

less than 5, and the inclination of the earth's

equator to the earth's orbit is 23^. Conse-

quently, when the moon's orbit lies between these
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two planes, the inclination of the moon's orbit to

the earth's equator is about 19; and when the

line of nodes is again in the same position, but the

orbit is inclined the other way, the inclination of

the moon's orbit to the earth's equator is about

28. At the latter time, therefore, in consequence

of the earth's oblateness, the moon, when farthest

from its node, will, by (235.), experience a smaller

attraction to the earth than at the former time

when farthest from its node. When in the line of

nodes, the attractions in the two cases will be

equal. On the whole, therefore, the attraction to

the earth will be less at the latter time than at the

former. For the period of 9| years, therefore, the

earth's attraction on the moon is gradually dimi-

nished, and then is gradually increased for the

same time. The moon's orbit (47.) becomes gra-

dually larger in the first of these times, and smaller

in the second. The change is very minute, but, as

explained in (49.), the alteration in the longitude

may be sensible. It is found by observation to

amount to about 8", bywhich the moon is sometimes

before her mean place, and sometimes behind it.

If the earth's flattening at each pole were more or

less than -3-wth of the semi-diameter, the effects on
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the moon, both in altering the position of the fun-

damental plane, and in producing this inequality

in the longitude, would be greater or less than the

quantities that we have mentioned ; and thus we

are led to the very remarkable conclusion, that by

observing the moon we can discover the amount of

the earth's oblateness, supposing the theory to be

true. This has been done; and the agreement

of the result thus obtained, with that obtained

from direct measures of the earth, is one of the

most striking proofs of the correctness of the

Theory of Universal Gravitation.

THE END.
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